Photo AI

18 (a) Express $\sqrt{3} + \sqrt{12}$ in the form $a\sqrt{3}$ where $a$ is an integer - Edexcel - GCSE Maths - Question 19 - 2019 - Paper 1

Question icon

Question 19

18-(a)-Express-$\sqrt{3}-+-\sqrt{12}$-in-the-form-$a\sqrt{3}$-where-$a$-is-an-integer-Edexcel-GCSE Maths-Question 19-2019-Paper 1.png

18 (a) Express $\sqrt{3} + \sqrt{12}$ in the form $a\sqrt{3}$ where $a$ is an integer. (b) Express $\left( \frac{1}{\sqrt{3}} \right)^{7}$ in the form $\frac{\sqrt{... show full transcript

Worked Solution & Example Answer:18 (a) Express $\sqrt{3} + \sqrt{12}$ in the form $a\sqrt{3}$ where $a$ is an integer - Edexcel - GCSE Maths - Question 19 - 2019 - Paper 1

Step 1

Express $\sqrt{3} + \sqrt{12}$ in the form $a\sqrt{3}$ where $a$ is an integer.

96%

114 rated

Answer

To solve this part, we first simplify the term 12\sqrt{12}. We can express it as:

12=43=43=23.\sqrt{12} = \sqrt{4 \cdot 3} = \sqrt{4} \cdot \sqrt{3} = 2\sqrt{3}.

Now we substitute back into the original expression:

3+12=3+23=33.\sqrt{3} + \sqrt{12} = \sqrt{3} + 2\sqrt{3} = 3\sqrt{3}.

Thus, we can write the expression in the form a3a\sqrt{3} where a=3a = 3.

Step 2

Express $\left( \frac{1}{\sqrt{3}} \right)^{7}$ in the form $\frac{\sqrt{b}}{c}$ where $b$ and $c$ are integers.

99%

104 rated

Answer

We start by simplifying the expression (13)7\left( \frac{1}{\sqrt{3}} \right)^{7}:

(13)7=17(3)7=137.\left( \frac{1}{\sqrt{3}} \right)^{7} = \frac{1^{7}}{(\sqrt{3})^{7}} = \frac{1}{\sqrt{3^{7}}}.

Next, we simplify 37\sqrt{3^{7}}:

37=363=(33)23=333=273.\sqrt{3^{7}} = \sqrt{3^{6} \cdot 3} = \sqrt{(3^{3})^{2} \cdot 3} = 3^{3} \sqrt{3} = 27\sqrt{3}.

Thus, the expression becomes:

1273.\frac{1}{27\sqrt{3}}.

To match the form bc\frac{\sqrt{b}}{c}, we multiply the numerator and denominator by 3\sqrt{3}:

3273=381.\frac{\sqrt{3}}{27 \cdot 3} = \frac{\sqrt{3}}{81}.

In this case, b=3b = 3 and c=81.c = 81.

Join the GCSE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;