Photo AI
Question 14
a and b are vectors such that \[ a = \begin{pmatrix} 2 \\ -3 \end{pmatrix} \] and \[ 3a - 2b = \begin{pmatrix} -8 \\ -17 \end{pmatrix} \] Find b as a column vector... show full transcript
Step 1
Answer
First, calculate the vector (3a):
[ 3a = 3 \cdot \begin{pmatrix} 2 \ -3 \end{pmatrix} = \begin{pmatrix} 6 \ -9 \end{pmatrix} ]
Now substitute (3a) into the equation:
[ \begin{pmatrix} 6 \ -9 \end{pmatrix} - 2b = \begin{pmatrix} -8 \ -17 \end{pmatrix} ]
Rearranging for (2b) gives:
[ 2b = \begin{pmatrix} 6 \ -9 \end{pmatrix} + \begin{pmatrix} -8 \ -17 \end{pmatrix} ]
Now perform the addition:
[ 2b = \begin{pmatrix} 6 - 8 \ -9 - 17 \end{pmatrix} = \begin{pmatrix} -2 \ -26 \end{pmatrix} ]
Next, divide both sides by 2 to find (b):
[ b = \begin{pmatrix} -2 \div 2 \ -26 \div 2 \end{pmatrix} = \begin{pmatrix} -1 \ -13 \end{pmatrix} ]
Report Improved Results
Recommend to friends
Students Supported
Questions answered