Photo AI

OYZ is a parallelogram - Edexcel - GCSE Maths - Question 1 - 2019 - Paper 3

Question icon

Question 1

OYZ-is-a-parallelogram-Edexcel-GCSE Maths-Question 1-2019-Paper 3.png

OYZ is a parallelogram. $\overrightarrow{OX} = \mathbf{a}$ $\overrightarrow{OY} = \mathbf{b}$ P is the point on $OX$ such that $OP : PX = 1 : 2$ R is the point on ... show full transcript

Worked Solution & Example Answer:OYZ is a parallelogram - Edexcel - GCSE Maths - Question 1 - 2019 - Paper 3

Step 1

Finding the Missing Vector

96%

114 rated

Answer

To find the position vector of point P, we can express ( \overrightarrow{OP} ) in terms of ( \mathbf{a} ) and ( \mathbf{b} ). Based on the ratio, we set:

OP=13OX=13a\overrightarrow{OP} = \frac{1}{3} \overrightarrow{OX} = \frac{1}{3} \mathbf{a}

The remaining segment ( \overrightarrow{PX} ) can be computed as:

PX=OXOP=a13a=23a\overrightarrow{PX} = \overrightarrow{OX} - \overrightarrow{OP} = \mathbf{a} - \frac{1}{3} \mathbf{a} = \frac{2}{3} \mathbf{a}

Step 2

Finding \( R \) on \( OY \)

99%

104 rated

Answer

For point R, we analyze the ratio ( OR : RY = 1 : 3 ). Thus, we have:

OR=14OY=14b\overrightarrow{OR} = \frac{1}{4} \overrightarrow{OY} = \frac{1}{4} \mathbf{b}

Similarly, the vector for segment ( \overrightarrow{RY} ) is:

RY=OYOR=b14b=34b\overrightarrow{RY} = \overrightarrow{OY} - \overrightarrow{OR} = \mathbf{b} - \frac{1}{4} \mathbf{b} = \frac{3}{4} \mathbf{b}

Step 3

Calculating \( ZP \) and \( ZR \)

96%

101 rated

Answer

Next, we express the vectors from Z to P and Z to R:

  1. The vector ( \overrightarrow{ZP} ): ZP=ZYYP=(OY+XZ)OP=b+(a0)13a=b+23a\overrightarrow{ZP} = \overrightarrow{ZY} - \overrightarrow{YP} = (\overrightarrow{OY} + \overrightarrow{XZ}) - \overrightarrow{OP} = \mathbf{b} + (\mathbf{a} - 0) - \frac{1}{3} \mathbf{a} = \mathbf{b} + \frac{2}{3} \mathbf{a}

  2. The vector ( \overrightarrow{ZR} ): ZR=ZYYR=(OY+XZ)OR=b+(a0)14b=b+34b=74b\overrightarrow{ZR} = \overrightarrow{ZY} - \overrightarrow{YR} = (\overrightarrow{OY} + \overrightarrow{XZ}) - \overrightarrow{OR} = \mathbf{b} + (\mathbf{a} - 0) - \frac{1}{4} \mathbf{b} = \mathbf{b} + \frac{3}{4} \mathbf{b} = \frac{7}{4} \mathbf{b}

Step 4

Finding the Ratio \( ZP : ZR \)

98%

120 rated

Answer

We now have both vectors:

  • ( ZP = \mathbf{b} + \frac{2}{3} \mathbf{a} )
  • ( ZR = \frac{7}{4} \mathbf{b} )

To find the ratio ( ZP : ZR ), we write: ZPZR=(b+23a)74b, multiplying both parts by 4 to simplify the fractions.\frac{ZP}{ZR} = \frac{\left( \mathbf{b} + \frac{2}{3} \mathbf{a} \right)}{\frac{7}{4} \mathbf{b}} \text{, multiplying both parts by } 4 \text{ to simplify the fractions.}

Simplifying gives: ZP:ZR=4(47)b:b+23a ZP : ZR = 4\left( \frac{4}{7}\right)\mathbf{b} : \mathbf{b} + \frac{2}{3}\mathbf{a}

Join the GCSE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;