Photo AI

16 (a) Use the iteration formula $x_{n} = \\sqrt{10 - 2x_{n-1}}$, to find the values of $x_{1}, x_{2}$, and $x_{3}$ - Edexcel - GCSE Maths - Question 18 - 2021 - Paper 2

Question icon

Question 18

16-(a)-Use-the-iteration-formula-$x_{n}-=-\\sqrt{10---2x_{n-1}}$,-to-find-the-values-of-$x_{1},-x_{2}$,-and-$x_{3}$-Edexcel-GCSE Maths-Question 18-2021-Paper 2.png

16 (a) Use the iteration formula $x_{n} = \\sqrt{10 - 2x_{n-1}}$, to find the values of $x_{1}, x_{2}$, and $x_{3}$. Start with $x_{0} = 2$. The values of $x_{1}, x... show full transcript

Worked Solution & Example Answer:16 (a) Use the iteration formula $x_{n} = \\sqrt{10 - 2x_{n-1}}$, to find the values of $x_{1}, x_{2}$, and $x_{3}$ - Edexcel - GCSE Maths - Question 18 - 2021 - Paper 2

Step 1

Solve for $x_{1}$

96%

114 rated

Answer

Using the iteration formula:

  1. Start with x0=2x_{0} = 2.
  2. Compute: x1=sqrt1022=sqrt62.449.x_{1} = \\sqrt{10 - 2 \cdot 2} = \\sqrt{6} \approx 2.449.

Step 2

Solve for $x_{2}$

99%

104 rated

Answer

Now, using x1x_{1} to find x2x_{2}:

  1. Compute: x2=sqrt1022.449=sqrt5.1022.26.x_{2} = \\sqrt{10 - 2 \cdot 2.449} = \\sqrt{5.102} \approx 2.26.

Step 3

Solve for $x_{3}$

96%

101 rated

Answer

Now, using x2x_{2} to find x3x_{3}:

  1. Compute: x3=sqrt1022.26=sqrt5.482.34.x_{3} = \\sqrt{10 - 2 \cdot 2.26} = \\sqrt{5.48} \approx 2.34.

Step 4

Find the values of $a$ and $b$

98%

120 rated

Answer

Given the values of x12.45x_{1} \approx 2.45, x22.26x_{2} \approx 2.26, and x32.34x_{3} \approx 2.34, we can see that these values are close to the root of the quadratic equation:

  • Assume x2+ax+b=0x^{2} + ax + b = 0 with roots being x1,x2x_{1}, x_{2}, and x3x_{3}.
  • We know:
    • The sum of roots x1+x2+x3=ax_{1} + x_{2} + x_{3} = -a.
    • The product of roots x1x2+x1x3+x2x3=bx_{1} \cdot x_{2} + x_{1} \cdot x_{3} + x_{2} \cdot x_{3} = b.

Calculating:

  1. The sum is approximately: x1+x2+x32.45+2.26+2.347.05,x_{1} + x_{2} + x_{3} \approx 2.45 + 2.26 + 2.34 \approx 7.05, therefore, a7.05a7.-a \approx 7.05 \Rightarrow a \approx -7.

  2. The product gives: x1x2+x1x3+x2x32.452.26+2.452.34+2.262.345.54+5.74+5.2816.56,x_{1} \cdot x_{2} + x_{1} \cdot x_{3} + x_{2} \cdot x_{3} \approx 2.45 \cdot 2.26 + 2.45 \cdot 2.34 + 2.26 \cdot 2.34 \approx 5.54 + 5.74 + 5.28 \approx 16.56, thus b16.b \approx 16.

Join the GCSE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;