Photo AI

The diagram shows a plan of Jason’s garden - Edexcel - GCSE Maths - Question 4 - 2022 - Paper 2

Question icon

Question 4

The-diagram-shows-a-plan-of-Jason’s-garden-Edexcel-GCSE Maths-Question 4-2022-Paper 2.png

The diagram shows a plan of Jason’s garden. ABCO and DEFO are rectangles. CDO is a right-angled triangle. AFO is a sector of a circle with centre O and angle AOF = ... show full transcript

Worked Solution & Example Answer:The diagram shows a plan of Jason’s garden - Edexcel - GCSE Maths - Question 4 - 2022 - Paper 2

Step 1

Step 1: Calculate the area of the rectangle ABCO

96%

114 rated

Answer

The area of rectangle ABCO can be calculated using the formula:

Area=length×width\text{Area} = \text{length} \times \text{width}

Here, the length AB is 11 m and the width AO (or CO) is 7 m:

Area of ABCO=11 m×7 m=77 m2\text{Area of ABCO} = 11 \text{ m} \times 7 \text{ m} = 77 \text{ m}^2

Step 2

Step 2: Calculate the area of the rectangle DEFO

99%

104 rated

Answer

The area of rectangle DEFO can also be calculated:

Area=length×width\text{Area} = \text{length} \times \text{width}

The length DE is 9 m and the width DO (or EF) is 7 m:

Area of DEFO=9 m×7 m=63 m2\text{Area of DEFO} = 9 \text{ m} \times 7 \text{ m} = 63 \text{ m}^2

Step 3

Step 3: Calculate the area of the triangle CDO

96%

101 rated

Answer

The area of triangle CDO can be calculated using the formula for the area of a triangle:

Area=12×base×height\text{Area} = \frac{1}{2} \times \text{base} \times \text{height}

Using CD as the base (7 m) and CO as the height (7 m):

Area of triangle CDO=12×7 m×7 m=24.5 m2\text{Area of triangle CDO} = \frac{1}{2} \times 7 \text{ m} \times 7 \text{ m} = 24.5 \text{ m}^2

Step 4

Step 4: Calculate the area of the sector AFO

98%

120 rated

Answer

The area of the sector AFO with radius 4 m and angle 90° can be calculated as:

Area=θ360×πr2\text{Area} = \frac{\theta}{360} \times \pi r^2

Here, (\theta = 90°) and (r = 4) m:

Area of sector AFO=90360×π×(4)2=14×π×16=4π12.57 m2\text{Area of sector AFO} = \frac{90}{360} \times \pi \times (4)^2 = \frac{1}{4} \times \pi \times 16 = 4\pi \approx 12.57 \text{ m}^2

Step 5

Step 5: Calculate the total area of the garden

97%

117 rated

Answer

Now, we sum the areas calculated:

Total Area=Area of ABCO+Area of DEFO+Area of triangle CDO+Area of sector AFO\text{Total Area} = \text{Area of ABCO} + \text{Area of DEFO} + \text{Area of triangle CDO} + \text{Area of sector AFO}

Substituting the values:

Total Area=77+63+24.5+12.57=177.07 m2\text{Total Area} = 77 + 63 + 24.5 + 12.57 = 177.07 \text{ m}^2

Step 6

Step 6: Calculate the number of bags of grass seed required

97%

121 rated

Answer

Since each bag covers 14 m², we find the number of bags needed:

Number of bags=Total AreaArea per bag=177.071412.64\text{Number of bags} = \frac{\text{Total Area}}{\text{Area per bag}} = \frac{177.07}{14} \approx 12.64

Rounding up, Jason needs 13 bags.

Step 7

Step 7: Calculate the total cost

96%

114 rated

Answer

The total cost for the grass seed is calculated by:

Total Cost=Number of bags×Cost per bag\text{Total Cost} = \text{Number of bags} \times \text{Cost per bag}

Thus,

Total Cost=13×10.95=142.35 £\text{Total Cost} = 13 \times 10.95 = 142.35\text{ £}

Join the GCSE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;