Photo AI

For all values of $x$: $f(x) = (x + 1)^2$ and $g(x) = 2(x - 1)$ (a) Show that $g(f(x)) = 2x(x + 2)$ (b) Find $g(7)$ (Total for Question 19 is 4 marks) - Edexcel - GCSE Maths - Question 20 - 2018 - Paper 1

Question icon

Question 20

For-all-values-of-$x$:--$f(x)-=-(x-+-1)^2$-and-$g(x)-=-2(x---1)$--(a)-Show-that-$g(f(x))-=-2x(x-+-2)$--(b)-Find-$g(7)$--(Total-for-Question-19-is-4-marks)-Edexcel-GCSE Maths-Question 20-2018-Paper 1.png

For all values of $x$: $f(x) = (x + 1)^2$ and $g(x) = 2(x - 1)$ (a) Show that $g(f(x)) = 2x(x + 2)$ (b) Find $g(7)$ (Total for Question 19 is 4 marks)

Worked Solution & Example Answer:For all values of $x$: $f(x) = (x + 1)^2$ and $g(x) = 2(x - 1)$ (a) Show that $g(f(x)) = 2x(x + 2)$ (b) Find $g(7)$ (Total for Question 19 is 4 marks) - Edexcel - GCSE Maths - Question 20 - 2018 - Paper 1

Step 1

Show that $g(f(x)) = 2x(x + 2)$

96%

114 rated

Answer

To show that g(f(x))=2x(x+2)g(f(x)) = 2x(x + 2), we start by calculating f(x)f(x):

  1. Calculate f(x)f(x):

    f(x) &= (x + 1)^2 \ &= x^2 + 2x + 1 \\ ext{Next, we substitute } f(x) ext{ into } g(x): \\ g(f(x)) = g(x^2 + 2x + 1) = 2((x^2 + 2x + 1) - 1) \\ = 2(x^2 + 2x) = 2x(x + 2) \\ ext{Thus, we have shown that } g(f(x)) = 2x(x + 2). \ ext{This confirms the required result.} \ ext{Hence, } g(f(x)) = 2x(x + 2). \ \

Step 2

Find $g(7)$

99%

104 rated

Answer

To find g(7)g(7), we will use the function definition g(x)=2(x1)g(x) = 2(x - 1):

  1. Substitute x=7x = 7 into g(x)g(x):

    g(7) &= 2(7 - 1) \ &= 2 imes 6 \ &= 12 \ ext{Thus, } g(7) = 12. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

Join the GCSE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;