Photo AI

Magnesium nitrate decomposes when heated to form magnesium oxide - OCR Gateway - GCSE Chemistry - Question 22 - 2023 - Paper 3

Question icon

Question 22

Magnesium-nitrate-decomposes-when-heated-to-form-magnesium-oxide-OCR Gateway-GCSE Chemistry-Question 22-2023-Paper 3.png

Magnesium nitrate decomposes when heated to form magnesium oxide. 2Mg(NO$_3$)$_2$ → 2MgO + 4NO$_2$ + O$_2$ (a) (i) Calculate the mass of oxygen made when 0.45 mole... show full transcript

Worked Solution & Example Answer:Magnesium nitrate decomposes when heated to form magnesium oxide - OCR Gateway - GCSE Chemistry - Question 22 - 2023 - Paper 3

Step 1

Calculate the mass of oxygen made when 0.45 moles of magnesium nitrate decomposes.

96%

114 rated

Answer

To determine the mass of oxygen produced, we first need to analyze the decomposition reaction.

From the balanced equation:

2Mg(NO3)22MgO+4NO2+O22Mg(NO_3)_2 \rightarrow 2MgO + 4NO_2 + O_2

We see that 2 moles of magnesium nitrate produce 1 mole of O2_2. Therefore, if 0.45 moles of magnesium nitrate decompose, the moles of oxygen produced can be calculated as follows:

Moles of O2=0.45extmolesMg(NO3)22=0.225extmolesO2\text{Moles of } O_2 = \frac{0.45 ext{ moles } Mg(NO_3)_2}{2} = 0.225 ext{ moles } O_2

Next, we find the mass of oxygen using the formula:

Mass=Moles×Molar mass\text{Mass} = \text{Moles} \times \text{Molar mass}

Here, the molar mass of O2=2×16.0=32.0extg/mol_2 = 2 \times 16.0 = 32.0 ext{ g/mol}. Therefore:

Mass of O2=0.225×32.0=7.2extg\text{Mass of } O_2 = 0.225 \times 32.0 = 7.2 ext{ g}

So the mass of oxygen produced is 7.2 g.

Step 2

Calculate how many molecules of nitrogen dioxide, NO₂, are produced from 0.45 moles of magnesium nitrate.

99%

104 rated

Answer

From the balanced equation:

2Mg(NO3)22MgO+4NO2+O22Mg(NO_3)_2 \rightarrow 2MgO + 4NO_2 + O_2

2 moles of magnesium nitrate produce 4 moles of NO2_2. Therefore, if 0.45 moles of magnesium nitrate decompose, the moles of nitrogen dioxide produced can be calculated as:

Moles of NO2=0.45extmolesMg(NO3)2×4extmolesNO22extmolesMg(NO3)2=0.90extmolesNO2\text{Moles of } NO_2 = 0.45 ext{ moles } Mg(NO_3)_2 \times \frac{4 ext{ moles } NO_2}{2 ext{ moles } Mg(NO_3)_2} = 0.90 ext{ moles } NO_2

Now, to find the number of molecules of NO2_2, we use Avogadro's constant:

Number of molecules=Moles×6.02×1023\text{Number of molecules} = \text{Moles} \times 6.02 \times 10^{23}

So,

Number of molecules of NO2=0.90×6.02×10235.418×1023\text{Number of molecules of } NO_2 = 0.90 \times 6.02 \times 10^{23} \approx 5.418 \times 10^{23}

Rounding to 3 significant figures, we get:

5.42×1023extmoleculesofNO25.42 \times 10^{23} ext{ molecules of } NO_2

Join the GCSE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

Other GCSE Chemistry topics to explore

;