Photo AI

In this triangle: - AB = 9 cm - AC = 10 cm - BC > 5 cm - angle BCA = 60° - angle ABC < 90° - OCR - GCSE Maths - Question 19 - 2018 - Paper 6

Question icon

Question 19

In-this-triangle:----AB-=-9-cm---AC-=-10-cm---BC->-5-cm---angle-BCA-=-60°---angle-ABC-<-90°-OCR-GCSE Maths-Question 19-2018-Paper 6.png

In this triangle: - AB = 9 cm - AC = 10 cm - BC > 5 cm - angle BCA = 60° - angle ABC < 90°. Calculate the area of triangle ABC.

Worked Solution & Example Answer:In this triangle: - AB = 9 cm - AC = 10 cm - BC > 5 cm - angle BCA = 60° - angle ABC < 90° - OCR - GCSE Maths - Question 19 - 2018 - Paper 6

Step 1

Calculate the length of BC using the Cosine Rule

96%

114 rated

Answer

To find BC, we apply the Cosine Rule:

BC2=AB2+AC22imesABimesACimesextcos(BCA)BC^2 = AB^2 + AC^2 - 2 imes AB imes AC imes ext{cos}(BCA)

Substituting the values:

BC2=92+1022×9×10×cos(60°)BC^2 = 9^2 + 10^2 - 2 \times 9 \times 10 \times \text{cos}(60°)

BC2=81+10090BC2=91BC=919.54extcmBC^2 = 81 + 100 - 90 \Rightarrow BC^2 = 91 \Rightarrow BC = \sqrt{91} \\ \approx 9.54 ext{ cm}

Step 2

Use the Sine Rule to find angle ABC

99%

104 rated

Answer

Using the Sine Rule:

ABsin(ABC)=ACsin(BCA)\frac{AB}{\sin(ABC)} = \frac{AC}{\sin(BCA)}

Rearranging for sin(ABC):

sin(ABC)=AB×sin(BCA)AC\sin(ABC) = \frac{AB \times \sin(BCA)}{AC}

Substituting the values:

sin(ABC)=9×sin(60°)10=9×3210=9320\sin(ABC) = \frac{9 \times \sin(60°)}{10} = \frac{9 \times \frac{\sqrt{3}}{2}}{10} = \frac{9\sqrt{3}}{20}

Step 3

Calculate the area of triangle ABC

96%

101 rated

Answer

The area of triangle ABC can be calculated using:

Area=12×AB×AC×sin(BCA)\text{Area} = \frac{1}{2} \times AB \times AC \times \sin(BCA)

Substituting the values:

Area=12×9×10×sin(60°)=12×9×10×32=9034=22.5338.97extcm2\text{Area} = \frac{1}{2} \times 9 \times 10 \times \sin(60°) = \frac{1}{2} \times 9 \times 10 \times \frac{\sqrt{3}}{2} = \frac{90\sqrt{3}}{4} = 22.5\sqrt{3} \approx 38.97 ext{ cm}^2

Join the GCSE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;