Photo AI

Use the formula $F = \frac{s}{\sqrt{tm}}$ to find the value of $F$ when $s = 5.8 \times 10^{6}$ t = $4.1 \times 10^{8}$ $m = 3.7 \times 10^{-2}$ Give your answer in standard form, correct to 2 significant figures. - OCR - GCSE Maths - Question 2 - 2019 - Paper 4

Question icon

Question 2

Use-the-formula-$F-=-\frac{s}{\sqrt{tm}}$-to-find-the-value-of-$F$-when--$s-=-5.8-\times-10^{6}$--t-=-$4.1-\times-10^{8}$--$m-=-3.7-\times-10^{-2}$--Give-your-answer-in-standard-form,-correct-to-2-significant-figures.-OCR-GCSE Maths-Question 2-2019-Paper 4.png

Use the formula $F = \frac{s}{\sqrt{tm}}$ to find the value of $F$ when $s = 5.8 \times 10^{6}$ t = $4.1 \times 10^{8}$ $m = 3.7 \times 10^{-2}$ Give your answer... show full transcript

Worked Solution & Example Answer:Use the formula $F = \frac{s}{\sqrt{tm}}$ to find the value of $F$ when $s = 5.8 \times 10^{6}$ t = $4.1 \times 10^{8}$ $m = 3.7 \times 10^{-2}$ Give your answer in standard form, correct to 2 significant figures. - OCR - GCSE Maths - Question 2 - 2019 - Paper 4

Step 1

Calculate the value of $tm$

96%

114 rated

Answer

To find tmtm, use the values of tt and mm:

tm=(4.1×108)(3.7×102)tm = (4.1 \times 10^{8})(3.7 \times 10^{-2})

Calculating this gives:

tm=4.1×3.7×1082=15.17×106=1.517×107tm = 4.1 \times 3.7 \times 10^{8 - 2} = 15.17 \times 10^{6} = 1.517 \times 10^{7}

Step 2

Calculate $\sqrt{tm}$

99%

104 rated

Answer

Now, we take the square root of tmtm:

\approx 1.23 \times 10^{3.5} \approx 3.55 \times 10^{3}$$

Step 3

Substitute values into the formula for $F$

96%

101 rated

Answer

Substituting the values back into the original formula:

F=stm=5.8×1063.55×103F = \frac{s}{\sqrt{tm}} = \frac{5.8 \times 10^{6}}{3.55 \times 10^{3}}

Step 4

Final calculation for $F$

98%

120 rated

Answer

Carrying out the division:

F5.83.55×10631.63×103F \approx \frac{5.8}{3.55} \times 10^{6 - 3} \approx 1.63 \times 10^{3}

Now round to 2 significant figures to get:

F1.6×103F \approx 1.6 \times 10^{3}

Join the GCSE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;