Photo AI

Calculate. (a) \( \sqrt{\frac{4.8^8 + 3.6^6}{4}} \) (b) \( \frac{1}{(2 \times 10^4) + (5 \times 10^3)} \) - OCR - GCSE Maths - Question 1 - 2017 - Paper 1

Question icon

Question 1

Calculate.-(a)-\(-\sqrt{\frac{4.8^8-+-3.6^6}{4}}-\)--(b)-\(-\frac{1}{(2-\times-10^4)-+-(5-\times-10^3)}-\)-OCR-GCSE Maths-Question 1-2017-Paper 1.png

Calculate. (a) \( \sqrt{\frac{4.8^8 + 3.6^6}{4}} \) (b) \( \frac{1}{(2 \times 10^4) + (5 \times 10^3)} \)

Worked Solution & Example Answer:Calculate. (a) \( \sqrt{\frac{4.8^8 + 3.6^6}{4}} \) (b) \( \frac{1}{(2 \times 10^4) + (5 \times 10^3)} \) - OCR - GCSE Maths - Question 1 - 2017 - Paper 1

Step 1

(a) \( \sqrt{\frac{4.8^8 + 3.6^6}{4}} \)

96%

114 rated

Answer

To solve this expression, we first calculate the numerator:

  1. Calculate ( 4.8^8 ):

    • ( 4.8^8 = 659181696 ).
  2. Calculate ( 3.6^6 ):

    • ( 3.6^6 = 729 ).
  3. Add the results:

    • ( 659181696 + 729 = 659182425 ).
  4. Now divide by 4:

    • ( \frac{659182425}{4} = 164795606.25 ).
  5. Finally, take the square root:

    • ( \sqrt{164795606.25} = 4061.37 ) (approx).

Thus, the answer is approximately 4061.37.

Step 2

(b) \( \frac{1}{(2 \times 10^4) + (5 \times 10^3)} \)

99%

104 rated

Answer

First, evaluate the expression in the denominator:

  1. Calculate ( 2 \times 10^4 = 20000 ).

  2. Calculate ( 5 \times 10^3 = 5000 ).

  3. Add these values:

    • ( 20000 + 5000 = 25000 ).

Next, calculate the final answer:

  1. Now find the reciprocal:
    • ( \frac{1}{25000} = 0.00004 ).

Therefore, the final answer is ( 0.00004 ).

Join the GCSE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;