Photo AI

Solve. $$x^2 - 6x + 15 = 3x - 5$$ Expand and simplify - OCR - GCSE Maths - Question 13 - 2017 - Paper 1

Question icon

Question 13

Solve.-$$x^2---6x-+-15-=-3x---5$$--Expand-and-simplify-OCR-GCSE Maths-Question 13-2017-Paper 1.png

Solve. $$x^2 - 6x + 15 = 3x - 5$$ Expand and simplify. $$(2x - 1)(x + 5)(3x - 2)$$

Worked Solution & Example Answer:Solve. $$x^2 - 6x + 15 = 3x - 5$$ Expand and simplify - OCR - GCSE Maths - Question 13 - 2017 - Paper 1

Step 1

Solve the equation: $$x^2 - 6x + 15 = 3x - 5$$

96%

114 rated

Answer

First, rearrange the equation to one side:

x26x+153x+5=0x^2 - 6x + 15 - 3x + 5 = 0

Combine like terms:

x29x+20=0x^2 - 9x + 20 = 0

Next, factor the quadratic equation:

(x4)(x5)=0(x - 4)(x - 5) = 0

Setting each factor to zero gives:

x4=0x=4x - 4 = 0 \Rightarrow x = 4 x5=0x=5x - 5 = 0 \Rightarrow x = 5

Thus, the solutions are: x=4x = 4 or x=5x = 5.

Step 2

Expand and simplify: $$(2x - 1)(x + 5)(3x - 2)$$

99%

104 rated

Answer

First, expand the first two binomials:

(2x1)(x+5)=2x2+10xx5=2x2+9x5(2x - 1)(x + 5) = 2x^2 + 10x - x - 5 = 2x^2 + 9x - 5

Now, multiply this result by the third binomial:

(2x2+9x5)(3x2)(2x^2 + 9x - 5)(3x - 2)

Expanding this:

=2x23x+2x2(2)+9x3x+9x(2)53x5(2)= 2x^2 \cdot 3x + 2x^2 \cdot (-2) + 9x \cdot 3x + 9x \cdot (-2) - 5 \cdot 3x - 5 \cdot (-2)

=6x34x2+27x1815x+10= 6x^3 - 4x^2 + 27x - 18 - 15x + 10

Combining like terms gives:

6x3+(4x2)+(27x15x)+10186x^3 + (-4x^2) + (27x - 15x) + 10 - 18

=6x34x2+12= 6x^3 - 4x^2 + 12.

Join the GCSE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;