We are given the terms:
- u2=41
- u3=206
- u4=1031
Using the term-to-term rule:
- For n=2:
u3=ku2+r⇒206=k(41)+r.
- For n=3:
u4=ku3+r⇒1031=k(206)+r.
We now have two equations:
- 41k+r=206
- 206k+r=1031
To eliminate r, we can subtract the first equation from the second:
(206k+r)−(41k+r)=1031−206
165k=825
k=165825=5.
Substituting k=5 back into the first equation:
41(5)+r=206⇒205+r=206⇒r=1.
Thus, k=5 and r=1.