Photo AI

Vector a = \begin{pmatrix} 3 \\ -1 \end{pmatrix} and vector b = \begin{pmatrix} -1 \\ 3 \end{pmatrix} - OCR - GCSE Maths - Question 10 - 2019 - Paper 1

Question icon

Question 10

Vector-a-=-\begin{pmatrix}-3-\\--1-\end{pmatrix}-and-vector-b-=-\begin{pmatrix}--1-\\-3-\end{pmatrix}-OCR-GCSE Maths-Question 10-2019-Paper 1.png

Vector a = \begin{pmatrix} 3 \\ -1 \end{pmatrix} and vector b = \begin{pmatrix} -1 \\ 3 \end{pmatrix}. (a) Find the values of k and n so that k(a + b) = \begin{pma... show full transcript

Worked Solution & Example Answer:Vector a = \begin{pmatrix} 3 \\ -1 \end{pmatrix} and vector b = \begin{pmatrix} -1 \\ 3 \end{pmatrix} - OCR - GCSE Maths - Question 10 - 2019 - Paper 1

Step 1

Find the values of k and n so that k(a + b) = \begin{pmatrix} 10 \\ n \end{pmatrix}

96%

114 rated

Answer

To find k and n, we first calculate the vector a + b:

[ a + b = \begin{pmatrix} 3 \ -1 \end{pmatrix} + \begin{pmatrix} -1 \ 3 \end{pmatrix} = \begin{pmatrix} 3 - 1 \ -1 + 3 \end{pmatrix} = \begin{pmatrix} 2 \ 2 \end{pmatrix} ]

Next, we evaluate the expression k(a + b):

[ k(a + b) = k \begin{pmatrix} 2 \ 2 \end{pmatrix} = \begin{pmatrix} 2k \ 2k \end{pmatrix} ]

Setting this equal to \begin{pmatrix} 10 \ n \end{pmatrix}, we have two equations:

  1. [ 2k = 10 ] Which gives us [ k = 5 ]

  2. [ 2k = n ] Substituting the value of k, we find [ n = 2(5) = 10 ]

Thus, the values are:

  • k = 5
  • n = 10

Step 2

Gavin starts to draw a diagram to show that a + 2b = \begin{pmatrix} 5 \\ 5 \end{pmatrix}

99%

104 rated

Answer

First, let's compute 2b:

[ 2b = 2 \begin{pmatrix} -1 \ 3 \end{pmatrix} = \begin{pmatrix} -2 \ 6 \end{pmatrix} ]

Now, we add vector a and 2b:

[ a + 2b = \begin{pmatrix} 3 \ -1 \end{pmatrix} + \begin{pmatrix} -2 \ 6 \end{pmatrix} = \begin{pmatrix} 3 - 2 \ -1 + 6 \end{pmatrix} = \begin{pmatrix} 1 \ 5 \end{pmatrix} ]

It appears that the result does not equal \begin{pmatrix} 5 \ 5 \end{pmatrix}, thus, Gavin would need to adjust the diagram to correctly represent the relationship.

Join the GCSE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;