Photo AI

In this triangle: - AB = 9 cm - AC = 10 cm - BC > 5 cm - angle BCA = 60° - angle ABC < 90° - OCR - GCSE Maths - Question 19 - 2018 - Paper 6

Question icon

Question 19

In-this-triangle:---AB-=-9-cm---AC-=-10-cm---BC->-5-cm---angle-BCA-=-60°---angle-ABC-<-90°-OCR-GCSE Maths-Question 19-2018-Paper 6.png

In this triangle: - AB = 9 cm - AC = 10 cm - BC > 5 cm - angle BCA = 60° - angle ABC < 90°. Calculate the area of triangle ABC.

Worked Solution & Example Answer:In this triangle: - AB = 9 cm - AC = 10 cm - BC > 5 cm - angle BCA = 60° - angle ABC < 90° - OCR - GCSE Maths - Question 19 - 2018 - Paper 6

Step 1

Calculate length of side BC

96%

114 rated

Answer

Using the Cosine Rule: BC2=AB2+AC22imesABimesACimesextcos(BCA)BC^2 = AB^2 + AC^2 - 2 imes AB imes AC imes ext{cos}(BCA) Substituting the known values: BC2=92+1022imes9imes10imesextcos(60°)BC^2 = 9^2 + 10^2 - 2 imes 9 imes 10 imes ext{cos}(60°) =81+10090= 81 + 100 - 90 =91= 91 Taking the square root: BC=ext91=9.54extcm(approx.)BC = ext{√}91 \\ = 9.54 ext{ cm (approx.)}

Step 2

Calculate area of triangle ABC

99%

104 rated

Answer

The area can be calculated using the formula: extArea=12×AB×AC×extsin(BCA) ext{Area} = \frac{1}{2} \times AB \times AC \times ext{sin}(BCA) Substituting the known values: extArea=12×9×10×extsin(60°) ext{Area} = \frac{1}{2} \times 9 \times 10 \times ext{sin}(60°) Using the value extsin(60°)=32 ext{sin}(60°) = \frac{\sqrt{3}}{2}: =12×9×10×32= \frac{1}{2} \times 9 \times 10 \times \frac{\sqrt{3}}{2} =22.53extcm2= 22.5\sqrt{3} ext{ cm}^2 Calculating the approximate value: 22.5×1.73238.89extcm2\approx 22.5 \times 1.732 \approx 38.89 ext{ cm}^2

Join the GCSE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;