Photo AI

Bennie is 7 years older than Ayesha - OCR - GCSE Maths - Question 5 - 2019 - Paper 4

Question icon

Question 5

Bennie-is-7-years-older-than-Ayesha-OCR-GCSE Maths-Question 5-2019-Paper 4.png

Bennie is 7 years older than Ayesha. Chloe is twice as old as Bennie. The sum of their three ages is 57. Work out the ages of Ayesha, Bennie and Chloe.

Worked Solution & Example Answer:Bennie is 7 years older than Ayesha - OCR - GCSE Maths - Question 5 - 2019 - Paper 4

Step 1

Step 1: Define Variables

96%

114 rated

Answer

Let A represent Ayesha's age. Then, we can express Bennie's age as:

B=A+7B = A + 7

Since Chloe is twice as old as Bennie, we have:

C=2BC = 2B

Substituting the expression for Bennie's age gives:

C=2(A+7)C = 2(A + 7)

Step 2

Step 2: Set Up the Equation

99%

104 rated

Answer

According to the problem, the sum of their ages is 57. Hence, we can write:

A+B+C=57A + B + C = 57

Substituting in the expressions for B and C:

A+(A+7)+2(A+7)=57A + (A + 7) + 2(A + 7) = 57

Step 3

Step 3: Simplify the Equation

96%

101 rated

Answer

Combining like terms, we have:

A+A+7+2A+14=57A + A + 7 + 2A + 14 = 57

This simplifies to:

4A+21=574A + 21 = 57

Step 4

Step 4: Solve for Ayesha's Age

98%

120 rated

Answer

Now, isolate A:

4A=57214A = 57 - 21

4A=364A = 36

Dividing by 4 gives:

A=9A = 9

Thus, Ayesha's age is 9 years.

Step 5

Step 5: Calculate Bennie's Age

97%

117 rated

Answer

Using the expression for Bennie's age, we find:

B=A+7=9+7=16B = A + 7 = 9 + 7 = 16

Therefore, Bennie's age is 16 years.

Step 6

Step 6: Calculate Chloe's Age

97%

121 rated

Answer

Finally, using the expression for Chloe's age:

C=2B=2(16)=32C = 2B = 2(16) = 32

Thus, Chloe's age is 32 years.

Join the GCSE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;