Photo AI

Calculate. (a) \( \sqrt{\frac{4.8^8 + 3.6^6}{4}} \) (b) \( \frac{1}{(2 \times 10^4) + (5 \times 10^3)} \) - OCR - GCSE Maths - Question 1 - 2017 - Paper 1

Question icon

Question 1

Calculate.-(a)-\(-\sqrt{\frac{4.8^8-+-3.6^6}{4}}-\)--(b)-\(-\frac{1}{(2-\times-10^4)-+-(5-\times-10^3)}-\)-OCR-GCSE Maths-Question 1-2017-Paper 1.png

Calculate. (a) \( \sqrt{\frac{4.8^8 + 3.6^6}{4}} \) (b) \( \frac{1}{(2 \times 10^4) + (5 \times 10^3)} \)

Worked Solution & Example Answer:Calculate. (a) \( \sqrt{\frac{4.8^8 + 3.6^6}{4}} \) (b) \( \frac{1}{(2 \times 10^4) + (5 \times 10^3)} \) - OCR - GCSE Maths - Question 1 - 2017 - Paper 1

Step 1

(a)

96%

114 rated

Answer

To solve part (a), we first calculate the expressions in the numerator:

  1. Compute ( 4.8^8 ) and ( 3.6^6 ):

    • ( 4.8^8 \approx 174.96 \times 10^8 )
    • ( 3.6^6 \approx 6.04 \times 10^6 )
  2. Add these two results together:

    • ( 4.8^8 + 3.6^6 \approx 174.96 \times 10^8 + 0.604 \times 10^8 = 175.564 \times 10^8 )
  3. Divide by ( 4 ):

    • ( \frac{175.564 \times 10^8}{4} = 43.891 \times 10^8 )
  4. Take the square root:

    • ( \sqrt{43.891 \times 10^8} = 3 \times 10^4 = 3 ).

Step 2

(b)

99%

104 rated

Answer

For part (b), calculate the expression:

  1. Identify the terms in the denominator:

    • ( 2 \times 10^4 = 20000 )
    • ( 5 \times 10^3 = 5000 )
  2. Add these values:

    • ( 20000 + 5000 = 25000 )
  3. Now compute the total expression:

    • ( \frac{1}{25000} = 4 \times 10^{-5} )

Join the GCSE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;