Photo AI

Use the formula $F = \frac{s}{\sqrt{tm}}$ to find the value of $F$ when $s = 5.8 \times 10^6$ t = $4.1 \times 10^8$ $m = 3.7 \times 10^{-2}$ Give your answer in standard form, correct to 2 significant figures. - OCR - GCSE Maths - Question 2 - 2019 - Paper 4

Question icon

Question 2

Use-the-formula-$F-=-\frac{s}{\sqrt{tm}}$-to-find-the-value-of-$F$-when--$s-=-5.8-\times-10^6$--t-=-$4.1-\times-10^8$--$m-=-3.7-\times-10^{-2}$--Give-your-answer-in-standard-form,-correct-to-2-significant-figures.-OCR-GCSE Maths-Question 2-2019-Paper 4.png

Use the formula $F = \frac{s}{\sqrt{tm}}$ to find the value of $F$ when $s = 5.8 \times 10^6$ t = $4.1 \times 10^8$ $m = 3.7 \times 10^{-2}$ Give your answer in ... show full transcript

Worked Solution & Example Answer:Use the formula $F = \frac{s}{\sqrt{tm}}$ to find the value of $F$ when $s = 5.8 \times 10^6$ t = $4.1 \times 10^8$ $m = 3.7 \times 10^{-2}$ Give your answer in standard form, correct to 2 significant figures. - OCR - GCSE Maths - Question 2 - 2019 - Paper 4

Step 1

Calculate the value of $tm$

96%

114 rated

Answer

To find tmtm, we multiply the values of tt and mm:

tm=(4.1×108)(3.7×102)tm = (4.1 \times 10^8)(3.7 \times 10^{-2})

Calculating this gives:

tm=4.1×3.7×1082=15.37×106tm = 4.1 \times 3.7 \times 10^{8 - 2} = 15.37 \times 10^6

This can be simplified to:

tm=1.537×107tm = 1.537 \times 10^7

Step 2

Calculate the value of $\sqrt{tm}$

99%

104 rated

Answer

Next, we find the square root of tmtm:

tm=1.537×107\sqrt{tm} = \sqrt{1.537 \times 10^7}

Using the properties of square roots gives:

tm=1.537×107\sqrt{tm} = \sqrt{1.537} \times \sqrt{10^7} 1.5371.24\sqrt{1.537} \approx 1.24 107=103.5=3.162×103\sqrt{10^7} = 10^{3.5} = 3.162 \times 10^3

Thus:

tm1.24×3.162×1043.91×104\sqrt{tm} \approx 1.24 \times 3.162 \times 10^4 \approx 3.91 \times 10^4

Step 3

Substitute values to find $F$

96%

101 rated

Answer

Now, substitute the values of ss and tm\sqrt{tm} into the formula for FF:

F=stm=5.8×1063.91×104F = \frac{s}{\sqrt{tm}} = \frac{5.8 \times 10^6}{3.91 \times 10^4}

Calculating the fraction gives:

F1.48×102F \approx 1.48 \times 10^2

Step 4

Express the final answer in standard form

98%

120 rated

Answer

Finally, we express this answer in standard form, correct to 2 significant figures:

F=1.5×102F = 1.5 \times 10^2

Join the GCSE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;