Work out. a)
\(
\begin{pmatrix}
-3 \\
2
\end{pmatrix}
+
\begin{pmatrix}
5 \\
7
\end{pmatrix}
\)
b)
\(
\begin{pmatrix}
3 \\
4
\end{pmatrix}
-2
\begin{pmatrix}
1 \\
-3
\end{pmatrix}
\) - OCR - GCSE Maths - Question 3 - 2018 - Paper 1

Question 3

Work out.
a)
\(
\begin{pmatrix}
-3 \\
2
\end{pmatrix}
+
\begin{pmatrix}
5 \\
7
\end{pmatrix}
\)
b)
\(
\begin{pmatrix}
3 \\
4
\end{pmatrix}
-2
\begin{pmatrix}
1 \\... show full transcript
Worked Solution & Example Answer:Work out. a)
\(
\begin{pmatrix}
-3 \\
2
\end{pmatrix}
+
\begin{pmatrix}
5 \\
7
\end{pmatrix}
\)
b)
\(
\begin{pmatrix}
3 \\
4
\end{pmatrix}
-2
\begin{pmatrix}
1 \\
-3
\end{pmatrix}
\) - OCR - GCSE Maths - Question 3 - 2018 - Paper 1
(a)

Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To compute the sum of the vectors, we add the corresponding components:
(−32)+(57)=(−3+52+7)=(29)
Thus, the answer for part (a) is:
(29)(b)

Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
For part (b), we first multiply the scalar by the vector:
2(1−3)=(2×12×−3)=(2−6)
Then, we subtract this result from the first vector:
(34)−(2−6)=(3−24−(−6))=(110)
Thus, the answer for part (b) is:
(110)Join the GCSE students using SimpleStudy...
97% of StudentsReport Improved Results
98% of StudentsRecommend to friends
100,000+ Students Supported
1 Million+ Questions answered
;