Photo AI

Los op vir $x$: 1.1.1 $3x^2 + 10x + 6 = 0$ (korrek tot TWEE desimale plekke) 1.1.2 $ ewline ext{Let: } ewlineegin{align*} ext{Let } z = rac{ ext{ } ext{Given}}{ ext{ } ext{formula}}\ ext{With:} ewline ext{ } ext{the expression} ewline ext{ } ext{is} ext{allocated × } 3 \ ext{ } = ewline ext{} ext{Answer is } ewline ext{} ext{when calculated.}\ ext{ } ext{answer is with ext{ expressions which follow as} }\ ext{also for the next} ewline ext{2.4 } ext{solved as follow a similar method,}\ ext{Answer needed also for the other expressions that follow } ext{and such that:}\ ext{the steps will lead to the same - English General - NSC Mathematics - Question 1 - 2017 - Paper 1

Question icon

Question 1

Los-op-vir-$x$:--1.1.1---$3x^2-+-10x-+-6-=-0$--(korrek-tot-TWEE-desimale-plekke)--1.1.2---$-ewline--ext{Let:-}--ewlineegin{align*}-ext{Let-}-z-=--rac{-ext{-}--ext{Given}}{-ext{-}--ext{formula}}\--ext{With:}-ewline-ext{-}--ext{the-expression}--ewline-ext{-}---ext{is}--ext{allocated-×-}-3-\--ext{-}-=-ewline-ext{}--ext{Answer-is-}--ewline-ext{}--ext{when-calculated.}\--ext{-}-ext{answer-is-with--ext{-expressions-which-follow-as}-}\--ext{also-for-the-next}--ewline-ext{2.4-}--ext{solved-as-follow-a-similar-method,}\--ext{Answer-needed-also-for-the-other-expressions-that-follow-}-ext{and-such-that:}\---ext{the-steps-will-lead-to-the-same-English General-NSC Mathematics-Question 1-2017-Paper 1.png

Los op vir $x$: 1.1.1 $3x^2 + 10x + 6 = 0$ (korrek tot TWEE desimale plekke) 1.1.2 $ ewline ext{Let: } ewlineegin{align*} ext{Let } z = rac{ ext{ } ext{G... show full transcript

Worked Solution & Example Answer:Los op vir $x$: 1.1.1 $3x^2 + 10x + 6 = 0$ (korrek tot TWEE desimale plekke) 1.1.2 $ ewline ext{Let: } ewlineegin{align*} ext{Let } z = rac{ ext{ } ext{Given}}{ ext{ } ext{formula}}\ ext{With:} ewline ext{ } ext{the expression} ewline ext{ } ext{is} ext{allocated × } 3 \ ext{ } = ewline ext{} ext{Answer is } ewline ext{} ext{when calculated.}\ ext{ } ext{answer is with ext{ expressions which follow as} }\ ext{also for the next} ewline ext{2.4 } ext{solved as follow a similar method,}\ ext{Answer needed also for the other expressions that follow } ext{and such that:}\ ext{the steps will lead to the same - English General - NSC Mathematics - Question 1 - 2017 - Paper 1

Step 1

1.1.1 $3x^2 + 10x + 6 = 0$ (korrek tot TWEE desimale plekke)

96%

114 rated

Answer

To solve the quadratic equation 3x2+10x+6=03x^2 + 10x + 6 = 0, we can apply the quadratic formula:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Here, a=3a = 3, b=10b = 10, and c=6c = 6. We first calculate the discriminant:

b24ac=1024(3)(6)=10072=28b^2 - 4ac = 10^2 - 4(3)(6) = 100 - 72 = 28

Next, substituting the values into the quadratic formula gives:

x=10±282(3)=10±276=5±sqrt73x = \frac{-10 \pm \sqrt{28}}{2(3)} = \frac{-10 \pm 2\sqrt{7}}{6} = \frac{-5 \pm \\sqrt{7}}{3}

Calculating both roots:

  • For x=5+73x = \frac{-5 + \sqrt{7}}{3}, approximately: x0.78x \approx -0.78
  • For x=573x = \frac{-5 - \sqrt{7}}{3}, approximately: x2.55x \approx -2.55

Step 2

1.1.2 $ ewline ext{Let: } ewlineegin{align*} ext{Let } z = rac{ ext{ } ext{Given}}{ ext{ } ext{formula}}\ ext{With:} ewline ext{ } ext{the expression} ewline ext{ } ext{is} ext{allocated × } 3 \ ext{ } = ewline ext{} ext{Answer is } ewline ext{} ext{when calculated.}\ ext{ } ext{answer is with ext{ expressions which follow as} }\ ext{also for the next} ewline ext{2.4 } ext{solved as follow a similar method,}\ ext{Answer needed also for the other expressions that follow } ext{and such that:}\ ext{the steps will lead to the same. shown does also follow: } ewline ewline ext{with rules shown earlier shown.} ewline ext{and follow the values, steps, and results, shown to you at first. } ext{What also leads to values in the end} ewline ext{, will be in intervals on and leading according with.} ewline ext{only checking back needed through concerns of ensuring that checked follows the same rules.} ewline

99%

104 rated

Answer

The next task involves simplifying the equation 6x215=x+1\sqrt{6x^2 - 15} = x + 1. Begin by squaring both sides:

6x215=(x+1)26x^2 - 15 = (x + 1)^2

Expanding the right side results in:

6x215=x2+2x+16x^2 - 15 = x^2 + 2x + 1

Rearranging gives:

5x22x16=05x^2 - 2x - 16 = 0

Applying the quadratic formula again:

x=(2)±(2)24(5)(16)2(5)x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(5)(-16)}}{2(5)}

Calculating:

x=2±4+32010=2±32410=2±1810x = \frac{2 \pm \sqrt{4 + 320}}{10} = \frac{2 \pm \sqrt{324}}{10} = \frac{2 \pm 18}{10}

This results in:

  • x=2x = 2 or x=1.6x = -1.6

Step 3

1.1.3 $x^2 + 2x - 24 \geq 0$

96%

101 rated

Answer

To solve the inequality x2+2x240x^2 + 2x - 24 \geq 0, first find the roots of the equation by factoring:

(x+6)(x4)0(x + 6)(x - 4) \geq 0

The critical points are x=6x = -6 and x=4x = 4. The intervals created are:

  1. (,6)(-\infty, -6)
  2. [6,4][-6, 4]
  3. (4,+)(4, +\infty)

Testing a point from each interval:

  • For x<6x < -6, choose x=7x = -7, which gives a positive value.
  • For 6<x<4-6 < x < 4, choose x=0x = 0, which gives a negative value.
  • For x>4x > 4, choose x=5x = 5, which gives a positive value.

Thus, the solution is:

x(,6][4,+)x \in (-\infty, -6] \cup [4, +\infty)

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

Other NSC Mathematics topics to explore

;