Photo AI

Functions, f and g, are given by $f(x) = 3 + ext{cos} \, x$ and $g(x) = 2x \, , x \, ext{in} \, ext{R}$ - Scottish Highers Maths - Question 6 - 2018

Question icon

Question 6

Functions,-f-and-g,-are-given-by---$f(x)-=-3-+--ext{cos}-\,-x$-and-$g(x)-=-2x-\,-,-x-\,--ext{in}-\,--ext{R}$-Scottish Highers Maths-Question 6-2018.png

Functions, f and g, are given by $f(x) = 3 + ext{cos} \, x$ and $g(x) = 2x \, , x \, ext{in} \, ext{R}$. (a) Find expressions for (i) $f(g(x))$ and (ii) ... show full transcript

Worked Solution & Example Answer:Functions, f and g, are given by $f(x) = 3 + ext{cos} \, x$ and $g(x) = 2x \, , x \, ext{in} \, ext{R}$ - Scottish Highers Maths - Question 6 - 2018

Step 1

Find expressions for $f(g(x))$

96%

114 rated

Answer

To find the expression for f(g(x))f(g(x)), we start by substituting g(x)g(x) into f(x)f(x):

f(g(x))=f(2x)=3+extcos(2x).f(g(x)) = f(2x) = 3 + ext{cos}(2x).

Thus, the final expression is:

f(g(x))=3+extcos(2x).f(g(x)) = 3 + ext{cos}(2x).

Step 2

Find expressions for $g(f(x))$

99%

104 rated

Answer

Next, we find the expression for g(f(x))g(f(x)) by substituting f(x)f(x) into g(x)g(x):

g(f(x))=g(3+extcos(x))=2(3+extcos(x))=6+2extcos(x).g(f(x)) = g(3 + ext{cos}(x)) = 2(3 + ext{cos}(x)) = 6 + 2 ext{cos}(x).

Thus, the final expression is:

g(f(x))=6+2extcos(x).g(f(x)) = 6 + 2 ext{cos}(x).

Step 3

Determine the value(s) of $x$ for which $f(g(x)) = g(f(x))$

96%

101 rated

Answer

We set the two expressions equal to each other:

3+extcos(2x)=6+2extcos(x).3 + ext{cos}(2x) = 6 + 2 ext{cos}(x).

Rearranging gives:

extcos(2x)2extcos(x)=3. ext{cos}(2x) - 2 ext{cos}(x) = 3. Substituting the identity extcos(2x)=2extcos2(x)1 ext{cos}(2x) = 2 ext{cos}^2(x) - 1 leads to:

2extcos2(x)12extcos(x)=3.2 ext{cos}^2(x) - 1 - 2 ext{cos}(x) = 3. This simplifies to:

2extcos2(x)2extcos(x)4=0.2 ext{cos}^2(x) - 2 ext{cos}(x) - 4 = 0. Factoring gives:

2(extcos2(x)extcos(x)2)=0.2( ext{cos}^2(x) - ext{cos}(x) - 2) = 0. Using the quadratic formula:

extcos(x)=b±b24ac2a=1±1+162=1±172. ext{cos}(x) = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{1 \pm \sqrt{1 + 16}}{2} = \frac{1 \pm \sqrt{17}}{2}.
This yields solutions for xx. Ensure that the solutions are within the domain 0x<2π0 \leq x < 2\pi.

Join the Scottish Highers students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;