Photo AI

The right-angled triangle in the diagram is such that $ ext{sin } x = rac{2}{ ext{√}11}$ and $0 < x < rac{ ext{π}}{4}$ - Scottish Highers Maths - Question 13 - 2018

Question icon

Question 13

The-right-angled-triangle-in-the-diagram-is-such-that-$-ext{sin-}-x-=--rac{2}{-ext{√}11}$-and-$0-<-x-<--rac{-ext{π}}{4}$-Scottish Highers Maths-Question 13-2018.png

The right-angled triangle in the diagram is such that $ ext{sin } x = rac{2}{ ext{√}11}$ and $0 < x < rac{ ext{π}}{4}$. (a) Find the exact value of: (i) $ ext{si... show full transcript

Worked Solution & Example Answer:The right-angled triangle in the diagram is such that $ ext{sin } x = rac{2}{ ext{√}11}$ and $0 < x < rac{ ext{π}}{4}$ - Scottish Highers Maths - Question 13 - 2018

Step 1

Find the exact value of: (i) sin 2x

96%

114 rated

Answer

To find extsin2x ext{sin } 2x, we use the double angle formula:

extsin2x=2imesextsinximesextcosx ext{sin } 2x = 2 imes ext{sin } x imes ext{cos } x

First, we need to calculate extcosx ext{cos } x. Using the Pythagorean identity:

extcosx=ext(1extsin2x) ext{cos } x = ext{√}(1 - ext{sin}^2 x)

Substituting ext{sin } x = rac{2}{ ext{√}11}:

ext{cos } x = ext{√}igg(1 - igg( rac{2}{ ext{√}11}igg)^2igg) = ext{√}igg(1 - rac{4}{11}igg) = ext{√}igg( rac{7}{11}igg) = rac{ ext{√}7}{ ext{√}11}

Now substituting the values we have:

ext{sin } 2x = 2 imes rac{2}{ ext{√}11} imes rac{ ext{√}7}{ ext{√}11} = rac{4 ext{√}7}{11}

Step 2

Find the exact value of: (ii) cos 2x

99%

104 rated

Answer

To find extcos2x ext{cos } 2x, we use the double angle formula:

extcos2x=extcos2xextsin2x ext{cos } 2x = ext{cos}^2 x - ext{sin}^2 x

Substituting the values:

ext{cos}^2 x = rac{7}{11}, ext{sin}^2 x = rac{4}{11}

Then,

ext{cos } 2x = rac{7}{11} - rac{4}{11} = rac{3}{11}

Step 3

By expressing sin 3x as sin(2x + x), find the exact value of sin 3x

96%

101 rated

Answer

Using the angle addition formula for sine:

extsin(2x+x)=extsin2ximesextcosx+extcos2ximesextsinx ext{sin }(2x + x) = ext{sin } 2x imes ext{cos } x + ext{cos } 2x imes ext{sin } x

We already calculated:

  • ext{sin } 2x = rac{4 ext{√}7}{11}
  • ext{cos } x = rac{ ext{√}7}{ ext{√}11}
  • ext{cos } 2x = rac{3}{11}
  • ext{sin } x = rac{2}{ ext{√}11}

Now substituting these values:

ext{sin } 3x = rac{4 ext{√}7}{11} imes rac{ ext{√}7}{ ext{√}11} + rac{3}{11} imes rac{2}{ ext{√}11}

Simplifying:

ext{sin } 3x = rac{4 imes 7}{11 imes ext{√}11} + rac{6}{11 imes ext{√}11} = rac{28 + 6}{11 imes ext{√}11} = rac{34}{11 imes ext{√}11}

Join the Scottish Highers students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;