Photo AI
Question 13
The right-angled triangle in the diagram is such that $ ext{sin } x = rac{2}{ ext{√}11}$ and $0 < x < rac{ ext{π}}{4}$. (a) Find the exact value of: (i) $ ext{si... show full transcript
Step 1
Answer
To find , we use the double angle formula:
First, we need to calculate . Using the Pythagorean identity:
Substituting ext{sin } x = rac{2}{ ext{√}11}:
ext{cos } x = ext{√}igg(1 - igg(rac{2}{ ext{√}11}igg)^2igg) = ext{√}igg(1 - rac{4}{11}igg) = ext{√}igg(rac{7}{11}igg) = rac{ ext{√}7}{ ext{√}11}
Now substituting the values we have:
ext{sin } 2x = 2 imes rac{2}{ ext{√}11} imes rac{ ext{√}7}{ ext{√}11} = rac{4 ext{√}7}{11}
Step 2
Step 3
Answer
Using the angle addition formula for sine:
We already calculated:
Now substituting these values:
ext{sin } 3x = rac{4 ext{√}7}{11} imes rac{ ext{√}7}{ ext{√}11} + rac{3}{11} imes rac{2}{ ext{√}11}
Simplifying:
ext{sin } 3x = rac{4 imes 7}{11 imes ext{√}11} + rac{6}{11 imes ext{√}11} = rac{28 + 6}{11 imes ext{√}11} = rac{34}{11 imes ext{√}11}
Report Improved Results
Recommend to friends
Students Supported
Questions answered