Photo AI

Given that \( \tan 2x = \frac{3}{4} \), \( 0 < x < \frac{\pi}{4} \), find the exact value of (a) \( \cos 2x \) (b) \( \cos x \). - Scottish Highers Maths - Question 10 - 2015

Question icon

Question 10

Given-that-\(-\tan-2x-=-\frac{3}{4}-\),-\(-0-<-x-<-\frac{\pi}{4}-\),-find-the-exact-value-of--(a)-\(-\cos-2x-\)--(b)-\(-\cos-x-\).-Scottish Highers Maths-Question 10-2015.png

Given that \( \tan 2x = \frac{3}{4} \), \( 0 < x < \frac{\pi}{4} \), find the exact value of (a) \( \cos 2x \) (b) \( \cos x \).

Worked Solution & Example Answer:Given that \( \tan 2x = \frac{3}{4} \), \( 0 < x < \frac{\pi}{4} \), find the exact value of (a) \( \cos 2x \) (b) \( \cos x \). - Scottish Highers Maths - Question 10 - 2015

Step 1

(a) \( \cos 2x \)

96%

114 rated

Answer

To find ( \cos 2x ), we can use the identity:

cos2x=1tan2x1+tan2x\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x}

From the given, ( \tan 2x = \frac{3}{4} ). We can find ( \tan x ) using the relation:

tan2x=2tanx1tan2x\tan 2x = \frac{2 \tan x}{1 - \tan^2 x}

Let ( \tan x = t ), then:

2t1t2=34\frac{2t}{1 - t^2} = \frac{3}{4}

Cross-multiplying gives:

8t=3(1t2)8t = 3(1 - t^2)

Expanding leads to:

3t2+8t3=03t^2 + 8t - 3 = 0

Using the quadratic formula:

t=4±(42)33(3)23=4±16+276=4±436t = \frac{-4 \pm \sqrt{(4^2) - 3 \cdot 3 \cdot (-3)}}{2 \cdot 3} = \frac{-4 \pm \sqrt{16 + 27}}{6} = \frac{-4 \pm \sqrt{43}}{6}

Choosing the positive value (since ( 0 < x < \frac{\pi}{4} )) gives:

tanx=4+436\tan x = \frac{-4 + \sqrt{43}}{6}

Now substituting back into ( \cos 2x ):

cos2x=1(4+436)21+(4+436)2\cos 2x = \frac{1 - \left(\frac{-4 + \sqrt{43}}{6}\right)^2}{1 + \left(\frac{-4 + \sqrt{43}}{6}\right)^2}

Calculate ( \cos 2x ) to find the exact value.

Step 2

(b) \( \cos x \)

99%

104 rated

Answer

To find ( \cos x ), we can use the identity:

cos2x=11+tan2x\cos^2 x = \frac{1}{1 + \tan^2 x}

Using the value of ( \tan x ) calculated from part (a):

tan2x=(4+436)2\tan^2 x = \left(\frac{-4 + \sqrt{43}}{6}\right)^2

Substituting into the cosine formula yields:

cos2x=11+(4+436)2\cos^2 x = \frac{1}{1 + \left(\frac{-4 + \sqrt{43}}{6}\right)^2}

Simplifying this gives:

cosx=11+(4+436)2\cos x = \sqrt{\frac{1}{1 + \left(\frac{-4 + \sqrt{43}}{6}\right)^2}}

Thus, evaluate and find the exact value of ( \cos x ).

Join the Scottish Highers students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

Other Scottish Highers Maths topics to explore

;