Photo AI

Evaluate \[ \int_{0}^{\frac{\pi}{6}} \cos\left(3x - \frac{\pi}{6}\right) dx - Scottish Highers Maths - Question 11 - 2019

Question icon

Question 11

Evaluate-\[-\int_{0}^{\frac{\pi}{6}}-\cos\left(3x---\frac{\pi}{6}\right)-dx-Scottish Highers Maths-Question 11-2019.png

Evaluate \[ \int_{0}^{\frac{\pi}{6}} \cos\left(3x - \frac{\pi}{6}\right) dx. \]

Worked Solution & Example Answer:Evaluate \[ \int_{0}^{\frac{\pi}{6}} \cos\left(3x - \frac{\pi}{6}\right) dx - Scottish Highers Maths - Question 11 - 2019

Step 1

Start to integrate

96%

114 rated

Answer

To integrate the function ( \cos(3x - \frac{\pi}{6}) ), we will use the substitution method. Let:
[ u = 3x - \frac{\pi}{6} ]
Then, the differential ( du = 3dx ) or ( dx = \frac{du}{3} ).
The limits change as follows:
When ( x = 0 ), ( u = 3(0) - \frac{\pi}{6} = -\frac{\pi}{6} )
When ( x = \frac{\pi}{6} ), ( u = 3 \times \frac{\pi}{6} - \frac{\pi}{6} = \frac{\pi}{3} ).
Therefore, the integral becomes:
[ \int_{-\frac{\pi}{6}}^{\frac{\pi}{3}} \cos(u) \cdot \frac{du}{3} ]

Step 2

Complete integration

99%

104 rated

Answer

Now, we can integrate:
[ \int \cos(u) , du = \sin(u) + C ]
Thus, the integral evaluated from (-\frac{\pi}{6}) to (\frac{\pi}{3}) is:
[ \frac{1}{3}\left[ \sin(u) \right]_{-\frac{\pi}{6}}^{\frac{\pi}{3}} = \frac{1}{3}\left[ \sin\left(\frac{\pi}{3}\right) - \sin\left(-\frac{\pi}{6}\right) \right]
]

Step 3

Substitute limits

96%

101 rated

Answer

Now substituting the limits into the sine function:
[ \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \quad \text{and} \quad \sin\left(-\frac{\pi}{6}\right) = -\frac{1}{2} ]
Thus, we have:
[ \frac{1}{3}\left( \frac{\sqrt{3}}{2} - \left(-\frac{1}{2}\right) \right) = \frac{1}{3}\left( \frac{\sqrt{3}}{2} + \frac{1}{2} \right) = \frac{1}{3}\left( \frac{\sqrt{3} + 1}{2} \right) ]

Step 4

Evaluate integral

98%

120 rated

Answer

Finally, we simplify this expression:
[ \frac{1}{3}\cdot\frac{1}{2}(\sqrt{3} + 1) = \frac{\sqrt{3} + 1}{6} ]
Therefore, the final answer is:
[ \frac{\sqrt{3} + 1}{6} ]

Join the Scottish Highers students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;