Photo AI

Functions $f$ and $g$ are given by $f(x) = x^2 - 2$ and $g(x) = 3x + 5$, for $x \in \mathbb{R}$ - Scottish Highers Maths - Question 5 - 2022

Question icon

Question 5

Functions-$f$-and-$g$-are-given-by-$f(x)-=-x^2---2$-and-$g(x)-=-3x-+-5$,-for-$x-\in-\mathbb{R}$-Scottish Highers Maths-Question 5-2022.png

Functions $f$ and $g$ are given by $f(x) = x^2 - 2$ and $g(x) = 3x + 5$, for $x \in \mathbb{R}$. (a) Find expressions for: (i) $f(g(x))$ and (ii) $g(f(x))$.... show full transcript

Worked Solution & Example Answer:Functions $f$ and $g$ are given by $f(x) = x^2 - 2$ and $g(x) = 3x + 5$, for $x \in \mathbb{R}$ - Scottish Highers Maths - Question 5 - 2022

Step 1

Find expressions for: (i) f(g(x))

96%

114 rated

Answer

To find f(g(x))f(g(x)), we substitute g(x)g(x) into the function ff.

Since g(x)=3x+5g(x) = 3x + 5, we have:

f(g(x))=f(3x+5)=(3x+5)22f(g(x)) = f(3x + 5) = (3x + 5)^2 - 2

Now, we expand this:

(3x+5)2=9x2+30x+25.(3x + 5)^2 = 9x^2 + 30x + 25.

Thus,

f(g(x))=9x2+30x+252=9x2+30x+23.f(g(x)) = 9x^2 + 30x + 25 - 2 = 9x^2 + 30x + 23.

Step 2

Find expressions for: (ii) g(f(x))

99%

104 rated

Answer

To find g(f(x))g(f(x)), we substitute f(x)f(x) into the function gg.

Since f(x)=x22f(x) = x^2 - 2, we have:

g(f(x))=g(x22)=3(x22)+5.g(f(x)) = g(x^2 - 2) = 3(x^2 - 2) + 5.

Now, we simplify this:

g(f(x))=3x26+5=3x21.g(f(x)) = 3x^2 - 6 + 5 = 3x^2 - 1.

Step 3

Determine the range of values of x for which f(g(x)) < g(f(x))

96%

101 rated

Answer

We need to solve the inequality:

f(g(x))<g(f(x)).f(g(x)) < g(f(x)).

Substituting our earlier results:

9x2+30x+23<3x21.9x^2 + 30x + 23 < 3x^2 - 1.

Rearranging gives:

6x2+30x+24<0.6x^2 + 30x + 24 < 0.

Factoring out the common term:

3(2x2+10x+8)<0.3(2x^2 + 10x + 8) < 0.

Next, we find the roots of the quadratic equation 2x2+10x+8=02x^2 + 10x + 8 = 0 using the quadratic formula:

x=b±b24ac2a=10±100644=10±64.x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-10 \pm \sqrt{100 - 64}}{4} = \frac{-10 \pm 6}{4}.

This gives us the roots:

x=1 and x=4.x = -1 \text{ and } x = -4.

The quadratic opens upwards (as the coefficient of x2x^2 is positive). Thus, the expression is negative between the roots:

4<x<1.-4 < x < -1.

Therefore, the range of values of xx is:

$$\boxed{(-4, -1)}.$

Join the Scottish Highers students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;