Photo AI

The functions $f$ and $g$ are defined on $\mathbb{R}$, the set of real numbers by $$f(x) = 2x^2 - 4x + 5$$ and $$g(x) = 3 - x.$$ (a) Given $h(x) = f(g(x))$, show that $h(x) = 2x^2 - 8x + 11.$ (b) Express $h(x)$ in the form $p(x + q)^2 + r.$ - Scottish Highers Maths - Question 12 - 2016

Question icon

Question 12

The-functions-$f$-and-$g$-are-defined-on-$\mathbb{R}$,-the-set-of-real-numbers-by--$$f(x)-=-2x^2---4x-+-5$$-and-$$g(x)-=-3---x.$$----(a)-Given-$h(x)-=-f(g(x))$,-show-that-$h(x)-=-2x^2---8x-+-11.$----(b)-Express-$h(x)$-in-the-form-$p(x-+-q)^2-+-r.$-Scottish Highers Maths-Question 12-2016.png

The functions $f$ and $g$ are defined on $\mathbb{R}$, the set of real numbers by $$f(x) = 2x^2 - 4x + 5$$ and $$g(x) = 3 - x.$$ (a) Given $h(x) = f(g(x))$, show... show full transcript

Worked Solution & Example Answer:The functions $f$ and $g$ are defined on $\mathbb{R}$, the set of real numbers by $$f(x) = 2x^2 - 4x + 5$$ and $$g(x) = 3 - x.$$ (a) Given $h(x) = f(g(x))$, show that $h(x) = 2x^2 - 8x + 11.$ (b) Express $h(x)$ in the form $p(x + q)^2 + r.$ - Scottish Highers Maths - Question 12 - 2016

Step 1

Given $h(x) = f(g(x))$, show that $h(x) = 2x^2 - 8x + 11.$

96%

114 rated

Answer

To find h(x)h(x), we first need to calculate g(x)g(x):

g(x)=3x.g(x) = 3 - x.

Now, substitute g(x)g(x) into f(x)f(x):

h(x)=f(g(x))=f(3x).h(x) = f(g(x)) = f(3 - x).

Next, we substitute 3x3 - x into the function f(x)f(x):

f(3x)=2(3x)24(3x)+5.f(3 - x) = 2(3 - x)^2 - 4(3 - x) + 5.

Calculating (3x)2(3 - x)^2 first:

(3x)2=96x+x2.(3 - x)^2 = 9 - 6x + x^2.

Next, substituting this into ff gives us:

h(x)=2(96x+x2)4(3x)+5.h(x) = 2(9 - 6x + x^2) - 4(3 - x) + 5.

Now we expand this:

=1812x+2x212+4x+5.= 18 - 12x + 2x^2 - 12 + 4x + 5.

Combining like terms:

h(x)=2x28x+11.h(x) = 2x^2 - 8x + 11.
This concludes part (a), and we have shown that h(x)=2x28x+11.h(x) = 2x^2 - 8x + 11.

Step 2

Express $h(x)$ in the form $p(x + q)^2 + r.$

99%

104 rated

Answer

We start with the expression for h(x)h(x) we found earlier:

h(x)=2x28x+11.h(x) = 2x^2 - 8x + 11.

Next, we factor out the coefficient of the x2x^2 term:

=2(x24x)+11.= 2(x^2 - 4x) + 11.

Now, we need to complete the square inside the parentheses. To do this, we take half of the coefficient of xx (which is -4), square it, and add/subtract it inside the parentheses:

=2(x24x+44)+11= 2(x^2 - 4x + 4 - 4) + 11

This can be re-arranged as:

=2((x2)24)+11= 2((x - 2)^2 - 4) + 11

Expanding that gives:

=2(x2)28+11= 2(x - 2)^2 - 8 + 11

Finally, we simplify:

=2(x2)2+3.= 2(x - 2)^2 + 3.

Thus, we express h(x)h(x) in the form p(x+q)2+rp(x + q)^2 + r where p=2p = 2, q=2q = -2, and r=3.r = 3.

Join the Scottish Highers students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;