Photo AI

The picture shows a model of a water molecule - Scottish Highers Maths - Question 5 - 2016

Question icon

Question 5

The-picture-shows-a-model-of-a-water-molecule-Scottish Highers Maths-Question 5-2016.png

The picture shows a model of a water molecule. Relative to suitable coordinate axes, the oxygen atom is positioned at point A(-2, 2, 5). The two hydrogen atoms are... show full transcript

Worked Solution & Example Answer:The picture shows a model of a water molecule - Scottish Highers Maths - Question 5 - 2016

Step 1

Express \( \vec{AB} \) and \( \vec{AC} \) in component form.

96%

114 rated

Answer

To express the vectors ( \vec{AB} ) and ( \vec{AC} ) in component form, we can subtract the coordinates of point A from those of points B and C.

  1. Calculate ( \vec{AB} ):
    [ \vec{AB} = B - A = (-10, 18, 7) - (-2, 2, 5) ]
    [ = (-10 + 2, 18 - 2, 7 - 5) ]
    [ = (-8, 16, 2) ]

  2. Calculate ( \vec{AC} ):
    [ \vec{AC} = C - A = (-4, -6, 21) - (-2, 2, 5) ]
    [ = (-4 + 2, -6 - 2, 21 - 5) ]
    [ = (-2, -8, 16) ]

Step 2

Hence, or otherwise, find the size of angle BAC.

99%

104 rated

Answer

To find the angle BAC, we first calculate the lengths of the vectors ( \vec{AB} ) and ( \vec{AC} ).

  1. Calculate lengths:
    [ |\vec{AB}| = \sqrt{(-8)^2 + (16)^2 + (2)^2} = \sqrt{64 + 256 + 4} = \sqrt{324} = 18 ]
    [ |\vec{AC}| = \sqrt{(-2)^2 + (-8)^2 + (16)^2} = \sqrt{4 + 64 + 256} = \sqrt{324} = 18 ]

  2. Scalar Product:
    [ \vec{AB} \cdot \vec{AC} = (-8)(-2) + (16)(-8) + (2)(16) ]
    [ = 16 - 128 + 32 = -80 ]

  3. Using cos formula:
    [ \cos{BAC} = \frac{\vec{AB} \cdot \vec{AC}}{|\vec{AB}| |\vec{AC}|} = \frac{-80}{18 \times 18} = \frac{-80}{324} ]

  4. Angle BAC:
    [ BAC = \cos^{-1}\left( \frac{-80}{324} \right) \approx 104.3^{\circ} \text{ or } 1.82 \text{ radians} ]

Join the Scottish Highers students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;