Photo AI

8. (a) Express $5 \, ext{cos} \, x - 2 \, ext{sin} \, x$ in the form $k \, ext{cos}(x + a)$, where $k > 0$ and $0 < a < 2\pi$ - Scottish Highers Maths - Question 8 - 2016

Question icon

Question 8

8.-(a)-Express-$5-\,--ext{cos}-\,-x---2-\,--ext{sin}-\,-x$-in-the-form-$k-\,--ext{cos}(x-+-a)$,-where-$k->-0$-and-$0-<-a-<-2\pi$-Scottish Highers Maths-Question 8-2016.png

8. (a) Express $5 \, ext{cos} \, x - 2 \, ext{sin} \, x$ in the form $k \, ext{cos}(x + a)$, where $k > 0$ and $0 < a < 2\pi$. (b) The diagram shows a sketch o... show full transcript

Worked Solution & Example Answer:8. (a) Express $5 \, ext{cos} \, x - 2 \, ext{sin} \, x$ in the form $k \, ext{cos}(x + a)$, where $k > 0$ and $0 < a < 2\pi$ - Scottish Highers Maths - Question 8 - 2016

Step 1

(a) Express $5 \, \text{cos} \, x - 2 \, \text{sin} \, x$ in the form $k \, \text{cos}(x + a)$

96%

114 rated

Answer

To express the equation in the form kcos(x+a)k \, \text{cos}(x + a), we start by using the compound angle formula:

kcos(x+a)=kcosxcosaksinxsinak \, \text{cos}(x + a) = k \, \text{cos} \, x \cdot \text{cos} \, a - k \, \text{sin} \, x \cdot \text{sin} \, a

Equating this with 5cosx2sinx5 \, \text{cos} \, x - 2 \, \text{sin} \, x, we can compare coefficients:

  • For cosx\text{cos} \, x: kcosa=5k \, \text{cos} \, a = 5
  • For sinx\text{sin} \, x: ksina=2-k \, \text{sin} \, a = -2

From the first equation, we have: k=5cosak = \frac{5}{\text{cos} \, a}

From the second equation, we find: k=2sinak = \frac{2}{\text{sin} \, a}

Thus, 5cosa=2sina5sina=2cosa\frac{5}{\text{cos} \, a} = \frac{2}{\text{sin} \, a} \, \Rightarrow \, 5 \, \text{sin} \, a = 2 \, \text{cos} \, a\n Dividing both sides by cosa\text{cos} \, a, we obtain: tan(a)=25\tan(a) = \frac{2}{5}

Now that we have found tan(a)\tan(a), we can find kk using: k=52+22=29 k = \sqrt{5^2 + 2^2} = \sqrt{29}

So, the expression can be written as: 29cos(x+a)\sqrt{29} \, \text{cos}(x + a)

where a=tan1(25)a = \tan^{-1}(\frac{2}{5}).

Step 2

(b) Find the x-coordinates of P and Q.

99%

104 rated

Answer

To find the x-coordinates of points P and Q where the line y=12y = 12 intersects the curve y=10+5cos(x)2sin(x)y = 10 + 5 \, \text{cos}(x) - 2 \, \text{sin}(x), we set:

10+5cos(x)2sin(x)=1210 + 5 \, \text{cos}(x) - 2 \, \text{sin}(x) = 12

This simplifies to: 5cos(x)2sin(x)=25 \, \text{cos}(x) - 2 \, \text{sin}(x) = 2

Rearranging gives: 5cos(x)2=2sin(x)5 \, \text{cos}(x) - 2 = 2 \, \text{sin}(x)

Further simplifying: 5cos(x)=2sin(x)+25 \, \text{cos}(x) = 2 \, \text{sin}(x) + 2

Since we previously expressed the equation in the form: 29cos(x+a)=2\sqrt{29} \, \text{cos}(x + a) = 2

We now solve: 29cos(x+a)=2cos(x+a)=229\sqrt{29} \, \text{cos}(x + a) = 2 \, \Rightarrow \, \text{cos}(x + a) = \frac{2}{\sqrt{29}}

Taking the arccosine gives: x+a=arccos(229)+2nπextorx+a=arccos(229)+2nπ,nZx + a = \arccos\left(\frac{2}{\sqrt{29}}\right) + 2n\pi \, ext{ or } \, x + a = -\arccos\left(\frac{2}{\sqrt{29}}\right) + 2n\pi, \, n \in \mathbb{Z}

Solving these equations will yield the x-coordinates for points P and Q.

Join the Scottish Highers students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;