Photo AI

Vectors u and v are \( u = \begin{pmatrix} 5 \\ 1 \\ -1 \end{pmatrix} \) and \( v = \begin{pmatrix} 3 \\ -8 \\ 6 \end{pmatrix} \) respectively - Scottish Highers Maths - Question 5 - 2017

Question icon

Question 5

Vectors-u-and-v-are---\(-u-=-\begin{pmatrix}-5-\\-1-\\--1-\end{pmatrix}-\)-and--\(-v-=-\begin{pmatrix}-3-\\--8-\\-6-\end{pmatrix}-\)-respectively-Scottish Highers Maths-Question 5-2017.png

Vectors u and v are \( u = \begin{pmatrix} 5 \\ 1 \\ -1 \end{pmatrix} \) and \( v = \begin{pmatrix} 3 \\ -8 \\ 6 \end{pmatrix} \) respectively. (a) Evaluate u . ... show full transcript

Worked Solution & Example Answer:Vectors u and v are \( u = \begin{pmatrix} 5 \\ 1 \\ -1 \end{pmatrix} \) and \( v = \begin{pmatrix} 3 \\ -8 \\ 6 \end{pmatrix} \) respectively - Scottish Highers Maths - Question 5 - 2017

Step 1

Evaluate u . v.

96%

114 rated

Answer

To evaluate the scalar product of vectors u and v, we can use the formula:

u.v=u1v1+u2v2+u3v3u . v = u_1 v_1 + u_2 v_2 + u_3 v_3

Substituting the components from u and v:

u=(511)  and  v=(386)u = \begin{pmatrix} 5 \\ 1 \\ -1 \end{pmatrix} \ \text{ and } \ v = \begin{pmatrix} 3 \\ -8 \\ 6 \end{pmatrix}

u.v=(5)(3)+(1)(8)+(1)(6)u . v = (5)(3) + (1)(-8) + (-1)(6)

Calculating each term:

  • First term: ( 5 \times 3 = 15 )
  • Second term: ( 1 \times -8 = -8 )
  • Third term: ( -1 \times 6 = -6 )

Now, adding these results together:

u.v=1586=1u . v = 15 - 8 - 6 = 1

Step 2

Calculate |w|.

99%

104 rated

Answer

We are given that the vector w makes an angle of ( \frac{\pi}{3} ) with the vector u. The scalar product can also be represented as:

u.w=uwcosθu . w = |u||w| \cos \theta

Where:

  • ( |u| ) is the magnitude of vector u
  • ( |w| ) is the magnitude of vector w
  • ( \theta ) is the angle between u and w

First, we calculate ( |u| ):

u=52+12+(1)2=25+1+1=27|u| = \sqrt{5^2 + 1^2 + (-1)^2} = \sqrt{25 + 1 + 1} = \sqrt{27}

Now we can substitute the known values into the scalar product equation:

u.w=273cos(π3)u . w = \sqrt{27} \cdot \sqrt{3} \cdot \cos \left(\frac{\pi}{3}\right)

We know that ( \cos \left(\frac{\pi}{3}\right) = \frac{1}{2} ), so:

u.w=27312=2732u . w = \sqrt{27} \cdot \sqrt{3} \cdot \frac{1}{2} = \frac{\sqrt{27} \cdot \sqrt{3}}{2}

Now, simplifying further:

u.w=812=92=4.5u . w = \frac{\sqrt{81}}{2} = \frac{9}{2} = 4.5

Join the Scottish Highers students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;