Photo AI

6. (a) Express $2 \, ext{cos}^2 x - 3 \, ext{sin}^2 x$ in the form $k \text{cos}(x + \alpha)$ where $k > 0$ and $0 \leq \alpha < 360$ - Scottish Highers Maths - Question 6 - 2019

Question icon

Question 6

6.-(a)-Express-$2-\,--ext{cos}^2-x---3-\,--ext{sin}^2-x$-in-the-form-$k-\text{cos}(x-+-\alpha)$-where-$k->-0$-and-$0-\leq-\alpha-<-360$-Scottish Highers Maths-Question 6-2019.png

6. (a) Express $2 \, ext{cos}^2 x - 3 \, ext{sin}^2 x$ in the form $k \text{cos}(x + \alpha)$ where $k > 0$ and $0 \leq \alpha < 360$. (b) Hence solve $2 \, ext... show full transcript

Worked Solution & Example Answer:6. (a) Express $2 \, ext{cos}^2 x - 3 \, ext{sin}^2 x$ in the form $k \text{cos}(x + \alpha)$ where $k > 0$ and $0 \leq \alpha < 360$ - Scottish Highers Maths - Question 6 - 2019

Step 1

Express $2 \, ext{cos}^2 x - 3 \, ext{sin}^2 x$ in the form $k \text{cos}(x + \alpha)$

96%

114 rated

Answer

We start by using the identity for the cosine of a sum:

cos(x+α)=cosxcosαsinxsinα.\text{cos}(x + \alpha) = \text{cos} x \text{cos} \alpha - \text{sin} x \text{sin} \alpha.
We can express 2cos2x3sin2x2 \, \text{cos}^2 x - 3 \, \text{sin}^2 x as:

2(cos2x32sin2x)=2(cos2x32(1cos2x))2 \left(\text{cos}^2 x - \frac{3}{2} \text{sin}^2 x \right) = 2 \left(\text{cos}^2 x - \frac{3}{2}(1 - \text{cos}^2 x) \right) =2(cos2x32+32cos2x)= 2 \left(\text{cos}^2 x - \frac{3}{2} + \frac{3}{2} \text{cos}^2 x \right) =72cos2x3.= \frac{7}{2} \text{cos}^2 x - 3.
To compare coefficients, we know: kcos(x+α)=k(cosxcosαsinxsinα).k \text{cos}(x + \alpha) = k \left(\text{cos} x \cos \alpha - \text{sin} x \sin \alpha \right). Thus, we determine:

  • The coefficient for cosx\text{cos} x is kcosα=2k \cos \alpha = 2.
  • The coefficient for sinx\text{sin} x is ksinα=3k \sin \alpha = -3.
    We can find kk:

k=(2)2+(3)2=4+9=13.k = \sqrt{(2)^2 + (-3)^2} = \sqrt{4 + 9} = \sqrt{13}.
Next, we find α\alpha:
Using: tanα=32,therefore,α=atan2(3,2)tan1(1.5).\tan \alpha = \frac{-3}{2}, \quad\text{therefore}, \alpha = \text{atan2}(-3, 2) \approx \tan^{-1}(-1.5).

Step 2

Hence solve $2 \, \text{cos}^2 x - 3 \, \text{sin}^2 x = 3$

99%

104 rated

Answer

From part (a), we already found that: 2cos2x3sin2x=13cos(x+α).2 \, \text{cos}^2 x - 3 \, \text{sin}^2 x = \sqrt{13} \text{cos}(x + \alpha). Setting this equal to 3, we have: 13cos(x+α)=3.\sqrt{13} \text{cos}(x + \alpha) = 3.
From here, we isolate cos(x+α)\text{cos}(x + \alpha): cos(x+α)=313.\text{cos}(x + \alpha) = \frac{3}{\sqrt{13}}.
Since we seek solutions for 0<x<3600 < x < 360, we find: x+α=cos1(313)+360n,nZx + \alpha = \cos^{-1}\left(\frac{3}{\sqrt{13}}\right) + 360n, \quad n \in \mathbb{Z} and\text{and} x+α=360cos1(313)+360n,nZ.x + \alpha = 360 - \cos^{-1}\left(\frac{3}{\sqrt{13}}\right) + 360n, \quad n \in \mathbb{Z}.
Lastly, we solve for xx in the specified range.

Join the Scottish Highers students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;