Photo AI

Last Updated Sep 27, 2025

Integrating with Trigonometric Identities Simplified Revision Notes

Revision notes with simplified explanations to understand Integrating with Trigonometric Identities quickly and effectively.

user avatar
user avatar
user avatar
user avatar
user avatar

427+ students studying

8.2.7 Integrating with Trigonometric Identities

Step-by-step method:

infoNote

To integrate using trigonometric identities:

  1. Simplify the expression with identities like half-angle, double-angle, or product-to-sum.
  2. Apply standard integrals (e.g., sin(x)dx=cos(x)+C\int \sin(x) \, dx = -\cos(x) + C ).
  3. Simplify the result and add the constant CC . This process reduces complex trigonometric integrals to manageable forms.

Trigonometric Integration

Integrating trig functions requires in-depth knowledge and quick recall of trigonometric identities.


Key Trigonometric Identities:

infoNote
sin2θ+cos2θ1\sin^2 \theta + \cos^2 \theta \equiv 1tan2θ+1sec2θ\tan^2 \theta + 1 \equiv \sec^2 \theta1+cot2θcsc2θ1 + \cot^2 \theta \equiv \csc^2 \thetacos2θcos2θsin2θ=2cos2θ1=12sin2θ\cos 2\theta \equiv \cos^2 \theta - \sin^2 \theta = 2 \cos^2 \theta - 1 = 1 - 2 \sin^2 \thetasin2θ2sinθcosθ\sin 2\theta \equiv 2 \sin \theta \cos \thetatanθsinθcosθ\tan \theta \equiv \frac{\sin \theta}{\cos \theta}

Examples of Trigonometric Integration:

infoNote
  1. Example: tan2θdθ\int \tan^2 \theta \, d\theta
(tan2θ+1sec2θ)(\tan^2 \theta +1 \equiv \sec^2 \theta)=sec2θ1dθtanθθ+c=\int \sec^2\theta-1 \,d\theta \Rightarrow \tan \theta - \theta+ c
  1. Example: tanθdθ=sinθcosθdθ(tanθsinθcosθ)\int \tan \theta \, d\theta = \int \frac{\sin \theta}{\cos \theta} \, d\theta \quad (\tan \theta \equiv \frac {\sin \theta}{\cos \theta}) Let u=cosθu = \cos \theta
dudθ=sinθdθ=1sinθdu\Rightarrow \frac{du}{d\theta} = -\sin \theta \Rightarrow d\theta = \frac{-1}{\sin \theta} \, duI=sinθu×1sinθdu=1udu=lnu\Rightarrow I = \int \frac{\cancel\sin \theta}{u} \times \frac{-1}{\cancel\sin \theta} \, du = -\int \frac{1}{u} \, du = -\ln |u|=lncosθ+c(or 1lncosθ=ln(cosθ)1=lnsecθ)= -\ln |\cos \theta| + c \quad \text{(or } -1 \ln |\cos \theta | =\ln |(\cos \theta)^{-1} | = \ln |\sec \theta| \text{)}
  1. Example: sinθcosθdθ=12sin2θdθ \int \sin \theta \cos \theta \, d\theta = \int \frac{1}{2} \sin 2\theta \, d\theta
=14cos2θ+c= \frac{-1}{4} \cos 2\theta + c
  1. Example: sinθcosθdθ\int \sin \theta \cos \theta \, d\theta
Let u=sinθdudθ=cosθdθ=1cosθdu\Rightarrow \text{Let } u = \sin \theta \Rightarrow \frac{du}{d\theta} = \cos \theta \Rightarrow d\theta = \frac{1}{\cos \theta} \, du=ucosθ×1cosθdu=\int u \,\cancel\cos \theta \times \frac{1}{\cancel\cos \theta} \, du=udu=12u2+c=12sin2θ+c=\int u \, du = \frac {1}{2}u^2 + c = \frac {1}{2}\sin^2 \theta +c

Verification of Identity:

12sin2θ+c14cos2θ+c2=14cos2θ+c2\frac{1}{2} \sin^2 \theta + \frac{c_1}{4} \cos 2\theta + c_2 = \frac{1}{4} \cos 2\theta + c_214(12sin2θ)+c2=14+12sin2θ+c2\Rightarrow \frac{1}{4} (1 - 2\sin^2 \theta) + c_2 = \frac{1}{4} + \frac{1}{2} \sin^2 \theta + c_2=12sin2θ+14+c2= \frac{1}{2} \sin^2 \theta + \frac{1}{4}+c_2 \quad \checkmark

infoNote

Example

tan3xdx=tan2xtan2xdx=tan2x(sec2x1)dx\int \tan^3 x \, dx = \int \tan^2 x \tan^2 x \, dx = \int \tan^2 x (\sec^2 x - 1) \, dx=tan2xsec2x(A)tan2xdx(B)= \int \tan^2 x \sec^2 x \quad(\text{\textcircled A}) - \int \tan^2 x \, dx \quad(\text{\textcircled B})

A\text{\textcircled A}: Let u=tanxu = \tan x dudx=sec2xdx=1sec2xdu\Rightarrow \frac{du}{dx} = \sec^2 x \Rightarrow dx = \frac{1}{\sec^2 x} \, du

Ausec2x×1sec2xdu=13u3+c=13tan3x+c\text{\textcircled A}\Rightarrow \int u\, \cancel\sec^2 x \times \frac {1}{\cancel\sec^2 x}\, du = \frac {1}{3}u^3+c = \frac {1}{3}\tan^3x+c

B\text{\textcircled B}:

tan2xdx=sec2x1dx=tanxx+c2\int \tan^2 x \, dx = \int \sec^2x-1 \, dx= \tan x - x +c_2I=13tan3xtanx+x+dintegration constant\therefore \quad I = \frac{1}{3}\tan^3 x - \tan x +x+d \leftarrow \text{integration constant}

Integrating sin2x and cos2x\sin^2 x \ and\ \cos^2 x

infoNote
  1. Expand cos2x\cos 2x and write only in terms of what we are asked to integrate.
  2. Make our integral the subject.
  3. Replace our integral with the new integrable expression.

infoNote

Example:

sin2xdx\int \sin^2 x \, dxcos2x=12sin2x2sin2x=1cos2xsin2x=1212cos2x\cos 2x = 1 - 2 \sin^2 x \\ 2\sin^2x = 1-\cos 2x\\ \sin^2 x = \frac{1}{2}-\frac {1}{2}\cos2xI=1212cos(2x)dxI = \int \frac{1}{2} - \frac{1}{2} \cos (2x) \, dx=12x14sin(2x)+c= \frac{1}{2}x - \frac{1}{4} \sin(2x) + c

infoNote

Example:

cos2xdx\int \cos^2 x \, dxcos2x=2cos2x12cos2x=cos2x+1cos2x=12cos2x+12\cos 2x = 2 \cos^2 x - 1 \\ \Rightarrow 2\cos^2x=\cos2x +1\\ \Rightarrow \cos^2x=\frac {1}{2}\cos2x+\frac {1}{2}=12cos2x+12dx= \int \frac {1}{2}\cos2x+\frac {1}{2}\, dx=12x+14sin(2x)+c= \frac{1}{2}x + \frac{1}{4} \sin(2x) + c

infoNote

Example:

cos2(10x)dx\int \cos^2 (10x) \, dx

cos2θ=2cos2θ1\cos 2\theta = 2\cos^2 \theta -1

Multiply by 2 and Divided by 2

cos20x=2cos2(10x)12cos2(10x)=cos(20x)+1\cos 20x = 2 \cos^2(10x) - 1\\ \Rightarrow 2\cos^2(10x) = \cos(20x) +1cos2(10x)=12cos(20x)+12\Rightarrow \cos^2(10x) = \frac{1 }{2}\cos (20x)+\frac {1}{2}=12cos(20x)+12dx=140sin(20x)+12x+c=\int \frac{1 }{2}\cos (20x)+\frac {1}{2} \, dx \\ = \frac {1}{40}\sin (20x)+\frac {1}{2}x+c(xsin2x)2dx=(xsin2x)(xsin2x)dx\int (x - \sin 2x)^2 \, dx = \int (x -\sin 2x)(x- \sin 2x) \, dx=x2xsin2xxsin2x+sin22xdx= \int x^2-x\sin2x-x\sin2x+\sin^22x\, dx=x22xsin2x+sin22xdx=\int x^2 - 2x\sin2x + \sin^22x \, dxA=x2B=2xsin2xC=sin22xdx\boxed {\text{\textcircled A} = x^2 \bigg | \text{\textcircled B} = 2x\sin2x \bigg | \text{\textcircled C}= \sin^22x \, dx}

A\text{\textcircled A} x2dx\int x^2 \, dx

=13x3+c= \frac{1}{3}x^3 + c

B\text{\textcircled B} 2xsin2xdx\int 2x \sin 2x \, dx By parts: u=2xu = 2x

dudx=2\Rightarrow \frac{du}{dx} = 2v=12cos2xdvdx=sin2xv = -\frac{1}{2} \cos 2x \quad \Rightarrow \quad \frac{dv}{dx} = \sin 2xI=xcos2xcos2xdx\Rightarrow I = -x \cos 2x - \int -\cos 2x \, dx=xcos2x+cos2xdx= -x \cos 2x + \int \cos 2x \, dx=xcos2x+12sin2x+c= -x \cos 2x + \frac{1}{2} \sin 2x + c

C\text{\textcircled C} sin22xdx\int \sin^2 2x \, dx

cos(4x)=12sin2(2x)2sin2(2x)=1cos(4x)sin2(2x)=1212cos(4x)\cos(4x) = 1 - 2\sin^2(2x) \\ \Rightarrow 2\sin^2(2x) = 1 - \cos (4x)\\ \Rightarrow \sin^2(2x) = \frac {1}{2}-\frac {1}{2}\cos(4x)=1212cos(4x)dx= \int \frac {1}{2}-\frac {1}{2}\cos(4x)\, dx\\=12x18sin(4x)= \frac{1}{2}x - \frac{1}{8} \sin (4x)I=13x3xcos2x12sin2x+12x18sin4x+c\therefore \quad I = \frac{1}{3}x^3 - x \cos 2x - \frac{1}{2} \sin 2x + \frac{1}{2}x - \frac{1}{8}\sin 4x + c

Books

Only available for registered users.

Sign up now to view the full note, or log in if you already have an account!

500K+ Students Use These Powerful Tools to Master Integrating with Trigonometric Identities

Enhance your understanding with flashcards, quizzes, and exams—designed to help you grasp key concepts, reinforce learning, and master any topic with confidence!

120 flashcards

Flashcards on Integrating with Trigonometric Identities

Revise key concepts with interactive flashcards.

Try Maths Pure Flashcards

12 quizzes

Quizzes on Integrating with Trigonometric Identities

Test your knowledge with fun and engaging quizzes.

Try Maths Pure Quizzes

11 questions

Exam questions on Integrating with Trigonometric Identities

Boost your confidence with real exam questions.

Try Maths Pure Questions

27 exams created

Exam Builder on Integrating with Trigonometric Identities

Create custom exams across topics for better practice!

Try Maths Pure exam builder

18 papers

Past Papers on Integrating with Trigonometric Identities

Practice past papers to reinforce exam experience.

Try Maths Pure Past Papers

Other Revision Notes related to Integrating with Trigonometric Identities you should explore

Discover More Revision Notes Related to Integrating with Trigonometric Identities to Deepen Your Understanding and Improve Your Mastery

96%

114 rated

Further Integration

Integration as the limit of a sum

user avatar
user avatar
user avatar
user avatar
user avatar

302+ studying

188KViews

96%

114 rated

Further Integration

Integrating Other Functions (Trig, ln & e etc)

user avatar
user avatar
user avatar
user avatar
user avatar

471+ studying

188KViews

96%

114 rated

Further Integration

Reverse Chain Rule

user avatar
user avatar
user avatar
user avatar
user avatar

472+ studying

193KViews

96%

114 rated

Further Integration

f'(x)/f(x)

user avatar
user avatar
user avatar
user avatar
user avatar

234+ studying

193KViews
Load more notes

Join 500,000+ A-Level students using SimpleStudy...

Join Thousands of A-Level Students Using SimpleStudy to Learn Smarter, Stay Organized, and Boost Their Grades with Confidence!

97% of Students

Report Improved Results

98% of Students

Recommend to friends

500,000+

Students Supported

50 Million+

Questions answered