Photo AI

Last Updated Sep 27, 2025

Exponential Form Simplified Revision Notes

Revision notes with simplified explanations to understand Exponential Form quickly and effectively.

user avatar
user avatar
user avatar
user avatar
user avatar

372+ students studying

1.2.1 Exponential Form

Overview

The exponential form of complex numbers is a powerful tool in mathematics, particularly in handling complex number operations like multiplication and division. This form is closely tied to Euler's Formula, which connects the exponential function with trigonometric functions.

Let's start by exploring the background and deriving the exponential form step-by-step.

The Exponential Function

The exponential function exe^x can be expanded using its Maclaurin series as:

ex=1+x+x22!+x33!++xrr!+for all real or complex x.e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots + \frac{x^r}{r!} + \ldots \quad \text{for all real or complex } x.

For real numbers, this function grows exponentially, but it can also be applied when xx is a complex number.

Maclaurin Series for sinx\sin x and cosx\cos x

Similarly, we have the Maclaurin expansions for sinx\sin x and cosx\cos x:

sinx=xx33!+x55!x77!++(1)rx2r+1(2r+1)!+\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \ldots + (-1)^r \frac{x^{2r+1}}{(2r+1)!} + \ldots cosx=1x22!+x44!x66!++(1)rx2r(2r)!+\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \ldots + (-1)^r \frac{x^{2r}}{(2r)!} + \ldots

These expansions define the trigonometric functions in terms of powers of xx.

The Key Insight: Let x=iθx = i\theta

To understand the relationship between exponentials and trigonometric functions, we substitute x=iθx = i\theta (where ii is the imaginary unit) into the expansion for exe^x:

eiθ=1+iθ+(iθ)22!+(iθ)33!+(iθ)44!+e^{i\theta} = 1 + i\theta + \frac{(i\theta)^2}{2!} + \frac{(i\theta)^3}{3!} + \frac{(i\theta)^4}{4!} + \ldots

Now, simplify each term:

  • (iθ)2=i2θ2=θ2(i\theta)^2 = i^2 \theta^2 = -\theta^2
  • (iθ)3=i3θ3=iθ3(i\theta)^3 = i^3 \theta^3 = -i \theta^3
  • (iθ)4=i4θ4=θ4(i\theta)^4 = i^4 \theta^4 = \theta^4
  • (iθ)5=i5θ5=iθ5(i\theta)^5 = i^5 \theta^5 = i \theta^5 So,
eiθ=1+iθθ22!iθ33!+θ44!+iθ55!e^{i\theta} = 1 + i\theta - \frac{\theta^2}{2!} - \frac{i\theta^3}{3!} + \frac{\theta^4}{4!} + \frac{i\theta^5}{5!} - \ldots

Group real and imaginary parts:

eiθ=(1θ22!+θ44!θ66!+)+i(θθ33!+θ55!)e^{i\theta} = \left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \frac{\theta^6}{6!} + \ldots \right) + i\left( \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \ldots \right)

But from the Maclaurin expansions, we recognize these as:

eiθ=cosθ+isinθe^{i\theta} = \cos \theta + i \sin \theta

This is Euler's Formula:

eiθ=cosθ+isinθe^{i\theta} = \cos \theta + i \sin \theta

The Exponential Form of a Complex Number

For a complex number zz, written in polar form as:

z=r(cosθ+isinθ),z = r (\cos \theta + i \sin \theta),

we can equivalently write:

z=reiθ.z = r e^{i\theta}.

Here:

  • rr is the modulus (or magnitude) of the complex number: r=zr = |z|
  • θ\theta is the argument (or angle) of the complex number: θ=arg(z)\theta = \arg(z)

Why Use Exponential Form?

The exponential form simplifies many operations:

Multiplication of complex numbers:

z1=r1eiθ1,z2=r2eiθ2z_1 = r_1 e^{i\theta_1}, \quad z_2 = r_2 e^{i\theta_2}

Then:

z1z2=(r1r2)ei(θ1+θ2)z_1 z_2 = (r_1 r_2) e^{i(\theta_1 + \theta_2)}

The moduli multiply, and the arguments add.

Division of complex numbers:

z1z2=r1r2ei(θ1θ2)\frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)}

Finding powers (znz^n) and roots (z1/nz^{1/n}) becomes straightforward using De Moivre's Theorem.

infoNote

Example 1: Converting to Exponential Form Let's convert the complex number z=1+iz = 1 + i to exponential form.


Step 1: Find the modulus (r)( r ):

r=z=12+12=2r = |z| = \sqrt{1^2 + 1^2} = \sqrt{2}

Step 2: Find the argument (θ)( \theta ):

θ=tan1(11)=π4 radians\theta = \tan^{-1}\left(\frac{1}{1}\right) = \frac{\pi}{4} \text{ radians}

Step 3: Write in exponential form:

z=2eiπ4z = \sqrt{2} e^{i \frac{\pi}{4}}

So the exponential form of 1+i1 + i is 2eiπ4\sqrt{2} e^{i \frac{\pi}{4}}

infoNote

Example 2: Multiplying Complex Numbers in Exponential Form Multiply z1=2eiπ6z_1 = 2e^{i \frac{\pi}{6}} and z2=3eiπ3z_2 = 3e^{i \frac{\pi}{3}}


Step 1: Multiply the moduli:

r1×r2=2×3=6r_1 \times r_2 = 2 \times 3 = 6

Step 2: Add the arguments:

θ1+θ2=π6+π3=π2\theta_1 + \theta_2 = \frac{\pi}{6} + \frac{\pi}{3} = \frac{\pi}{2}

Step 3: Write the result:

z1×z2=6eiπ2z_1 \times z_2 = 6 e^{i \frac{\pi}{2}}

So the product is 6eiπ26 e^{i \frac{\pi}{2}}

infoNote

Key Takeaways:

  • The exponential form of a complex number is written as z=reiθz = r e^{i \theta}, where rr is the modulus and θ\theta is the argument.
  • The exponential form simplifies operations like multiplication, division, and raising complex numbers to powers.
  • Euler's formula, eiθ=cosθ+isinθe^{i \theta} = \cos \theta + i \sin \theta, is the key to converting between trigonometric and exponential forms of complex numbers. This form is especially helpful when dealing with advanced operations in complex numbers, as it makes calculations much easier!

Applications of Complex Numbers to Trig Identities

Using the exponential form of complex numbers, we can derive important trigonometric identities involving sinθ\sin\theta and cosθ\cos\theta. These identities help simplify trigonometric expressions and connect them with exponential functions.

Key Identity: Euler's Formula

From Euler's formula, we know:

eiθ=cosθ+isinθandeiθ=cos(θ)+isin(θ).e^{i\theta} = \cos \theta + i \sin \theta \quad \text{and} \quad e^{-i\theta} = \cos(-\theta) + i \sin(-\theta).

Using the even-odd properties of cos\cos and sin\sin:

  • cos(θ)=cos(θ)\cos(-\theta) = \cos(\theta) (even function).
  • sin(θ)=sin(θ)\sin(-\theta) = -\sin(\theta) (odd function). Thus:
eiθ=cosθisinθ.e^{-i\theta} = \cos \theta - i \sin \theta.

Deriving Trigonometric Identities

Identity 1: cosθ\cos \theta in terms of exponentials

infoNote

Let's calculate:

12(eiθ+eiθ).\frac{1}{2} \left( e^{i\theta} + e^{-i\theta} \right).

Step 1: Substitute the expressions for eiθe^{i\theta} and eiθe^{-i\theta}:

12(eiθ+eiθ)=12((cosθ+isinθ)+(cosθisinθ)).]\frac{1}{2} \left( e^{i\theta} + e^{-i\theta} \right) = \frac{1}{2} \left( (\cos \theta + i \sin \theta) + (\cos \theta - i \sin \theta) \right).]

Step 2: Simplify the terms:

=12(cosθ+isinθ+cosθisinθ).= \frac{1}{2} \left( \cos \theta + i \sin \theta + \cos \theta - i \sin \theta \right).

The imaginary parts isinθi \sin \theta and isinθ-i \sin \theta cancel out:

=12(2cosθ)=cosθ.= \frac{1}{2} \left( 2 \cos \theta \right) = \cos \theta.

Thus:

12(eiθ+eiθ)=cosθ.\frac{1}{2} \left( e^{i\theta} + e^{-i\theta} \right) = \cos \theta.

Identity 2: sinθ\sin \theta in terms of exponentials

infoNote

Now consider:

12(eiθeiθ).\frac{1}{2} \left( e^{i\theta} - e^{-i\theta} \right).

Step 1: Substitute the expressions for(eiθ) (e^{i\theta}) and (eiθ)(e^{-i\theta}):

12(eiθeiθ)=12((cosθ+isinθ)(cosθisinθ)).\frac{1}{2} \left( e^{i\theta} - e^{-i\theta} \right) = \frac{1}{2} \left( (\cos \theta + i \sin \theta) - (\cos \theta - i \sin \theta) \right).

Step 2: Simplify the terms:

=12(cosθ+isinθcosθ+isinθ).= \frac{1}{2} \left( \cos \theta + i \sin \theta - \cos \theta + i \sin \theta \right).

The real parts cosθ\cos \theta and cosθ-\cos \theta cancel out:

=12(2isinθ)=isinθ.= \frac{1}{2} \left( 2i \sin \theta \right) = i \sin \theta.

Thus:

12(eiθeiθ)=isinθ.\frac{1}{2} \left( e^{i\theta} - e^{-i\theta} \right) = i \sin \theta.

Final Results

We've derived two important identities:

cosθ=12(eiθ+eiθ)\cos \theta = \frac{1}{2} \left( e^{i\theta} + e^{-i\theta} \right) sinθ=12i(eiθeiθ)\sin \theta = \frac{1}{2i} \left( e^{i\theta} - e^{-i\theta} \right)

These identities are fundamental for simplifying trigonometric expressions and solving equations involving complex exponentials.

infoNote

Example: Express cos2θ\cos 2\theta in exponential form.


Using the identity:

cosθ=12(eiθ+eiθ),\cos \theta = \frac{1}{2} \left( e^{i\theta} + e^{-i\theta} \right),

we replace θ\theta with 2θ2\theta:

cos2θ=12(ei(2θ)+ei(2θ)).\cos 2\theta = \frac{1}{2} \left( e^{i(2\theta)} + e^{-i(2\theta)} \right).

This is the exponential form of cos2θ\cos 2\theta

infoNote

Example: Derive the Double Angle Formula for cos2θ\cos 2\theta


From Euler's formula:

eiθ=cosθ+isinθ.e^{i\theta} = \cos \theta + i \sin \theta.

Squaring eiθe^{i\theta}

(eiθ)2=(cosθ+isinθ)2.(e^{i\theta})^2 = (\cos \theta + i \sin \theta)^2.

Expand:

ei2θ=cos2θ+2icosθsinθsin2θ.e^{i2\theta} = \cos^2 \theta + 2i \cos \theta \sin \theta - \sin^2 \theta.

Using cos2θ=Re(ei2θ)\cos 2\theta = \text{Re}(e^{i2\theta})

cos2θ=cos2θsin2θ.\cos 2\theta = \cos^2 \theta - \sin^2 \theta.

This confirms the familiar double-angle identity of cosine.

infoNote

Example: Write cos3θ\cos3\theta solely in terms of cosθ\cos\theta.


cos3θ+isin3θ\cos3\theta + i\sin3\theta

is our starting point.

Notice that cos3θ\cos3\theta is the real part of the above expression.


Using De Moivre's Theorem, we get:

cos(3θ)+isin(3θ)[cos(θ)+isin(θ)]3\cos(3\theta) + i\sin(3\theta) \equiv \left [ \cos(\theta) + i\sin(\theta)\right ]^3

Using the binomial expansion on this, we get:

cos3(θ)+3cos2(θ)(isin(θ))+3cos(θ)(isin(θ))2+(isin(θ))3\cos^3(\theta) + 3\cos^2(\theta)(i\sin(\theta)) + 3\cos(\theta)(i\sin(\theta))^2 + (i\sin(\theta))^3=cos3(θ)+3icos2(θ)sin(θ)3cos(θ)sin2(θ)isin3(θ)= \cos^3(\theta) + 3i\cos^2(\theta)\sin(\theta) - 3\cos(\theta)\sin^2(\theta) - i\sin^3(\theta)

Gathering together the real and imaginary parts:

=cos3(θ)3cos(θ)sin2(θ)+i(3cos2(θ)sin(θ)sin3(θ))= \cos^3(\theta) - 3\cos(\theta)\sin^2(\theta) + i(3\cos^2(\theta)\sin(\theta) - \sin^3(\theta))=cos(3θ)+isin(3θ)= \cos(3\theta) + i\sin(3\theta)

Thus

cos(3θ)cos3(θ)3cos(θ)sin2(θ)\cos(3\theta) \equiv \cos^3(\theta) - 3\cos(\theta)\sin^2(\theta)cos3(θ)3cos(θ)(1cos2(θ))\equiv \cos^3(\theta) - 3\cos(\theta)(1 - \cos^2(\theta))cos3θ3cosθ+3cos3θ\equiv \cos^3\theta - 3\cos\theta+3\cos^3\theta4cos3(θ)3cos(θ)\equiv 4\cos^3(\theta) - 3\cos(\theta)
infoNote

Example: Write cos(θ)\cos(\theta) in terms of cos(nθ)\cos(n\theta), where nNn \in \mathbb{N}:


Using the identity:

cos(θ)12(eiθ+eiθ)\cos(\theta) \equiv \frac{1}{2} \left(e^{i\theta} + e^{-i\theta}\right)

We get:

[12(eiθ+eiθ)]6\bigg [\frac{1}{2} \left(e^{i\theta} + e^{-i\theta}\right) \bigg]^6cos6(θ)164(eiθ+eiθ)6\cos^6(\theta) \equiv \frac{1}{64} \left(e^{i\theta} + e^{-i\theta}\right)^6

Expanding:

=164(ei6θ+6ei5θeiθ+15ei4θei2θ+20ei3θei3θ+15ei2θei4θ+6eiθei5θ+ei6θ)= \frac{1}{64} \bigg(e^{i6\theta} + 6e^{i5\theta}e^{-i\theta} + 15e^{i4\theta}e^{-i2\theta} + 20e^{i3\theta}e^{-i3\theta} + 15e^{-i2\theta}e^{-i4\theta} + 6e^{-i\theta}e^{-i5\theta} + e^{-i6\theta}\bigg)=164(ei6θ+6ei4θ+15ei2θ+20+15ei2θ+6ei4θ+ei6θ)= \frac{1}{64} \bigg(e^{i6\theta} + 6e^{i4\theta} + 15e^{i2\theta} + 20 + 15e^{-i2\theta} + 6e^{-i4\theta} + e^{-i6\theta}\bigg)

Now gathering together terms that contain powers of the same magnitude:

cos6(θ)164((ei6θ+ei6θ)+6(ei4θ+ei4θ)+15(ei2θ+ei2θ)+20)\Rightarrow \cos^6(\theta) \equiv \frac{1}{64} \bigg( \left( e^{i6\theta} + e^{-i6\theta} \right) + 6 \left( e^{i4\theta} + e^{-i4\theta} \right) + 15 \left( e^{i2\theta} + e^{-i2\theta} \right) + 20 \bigg)
Assume2cos6θ=(ei6θ+ei6θ)2cos4θ=(ei4θ+ei4θ)2cos2θ=(ei2θ+ei2θ)\text {Assume} \quad 2\cos 6\theta = \left( e^{i6\theta} + e^{-i6\theta} \right) \quad \quad 2\cos 4\theta = \left( e^{i4\theta} + e^{-i4\theta} \right)\quad \\\quad 2\cos 2\theta = \left( e^{i2\theta} + e^{-i2\theta} \right)
164(2cos(6θ)+12cos(4θ)+30cos(2θ)+20)\equiv \frac{1}{64} \bigg( 2\cos(6\theta) + 12\cos(4\theta) + 30\cos(2\theta) + 20 \bigg)132(cos(6θ)+6cos(4θ)+15cos(2θ)+10)\equiv \frac{1}{32} \bigg( \cos(6\theta) + 6\cos(4\theta) + 15\cos(2\theta) + 10 \bigg)

Key Takeaways

Key Exponential Identities:

cosθ=12(eiθ+eiθ),sinθ=12i(eiθeiθ).\cos \theta = \frac{1}{2} (e^{i\theta} + e^{-i\theta}), \quad \sin \theta = \frac{1}{2i} (e^{i\theta} - e^{-i\theta}).

Even and Odd Functions:

  • cos(θ)=cos(θ)\cos(-\theta) = \cos(\theta)
  • sin(θ)=sin(θ)\sin(-\theta) = -\sin(\theta) Common Mistake: Forgetting that i2=1i^2 = -1 when simplifying exponential terms.

Proof

Exponential forms of complex numbers simplify operations like multiplication and division, making it easy to prove key results and solve problems. Here, we'll go through proofs and examples with clear explanations.

Proof: Argument of a Product

infoNote

Let:

z1=reiα,z2=seiβz_1 = r e^{i\alpha}, \quad z_2 = s e^{i\beta}

We'll find the argument of z1z2z_1 z_2


Step 1: Multiply the complex numbers

z1z2=(reiα)(seiβ)=rsei(α+β)z_1 z_2 = (r e^{i\alpha})(s e^{i\beta}) = rs e^{i(\alpha + \beta)}

Using Euler's formula:

z1z2=rs(cos(α+β)+isin(α+β))z_1 z_2 = rs \left( \cos(\alpha + \beta) + i \sin(\alpha + \beta) \right)

This shows that the argument of z1z2is(α+β)z_1 z_2 is (\alpha + \beta)

  • Argument of z1z_1: arg(z1)=α\arg(z_1) = \alpha
  • Argument of z2z_2: arg(z2)=β\arg(z_2) = \beta
  • Argument of z1z2z_1 z_2: arg(z1z2)=α+β\arg(z_1 z_2) = \alpha + \beta

Thus:

arg(z1z2)=arg(z1)+arg(z2)\arg(z_1 z_2) = \arg(z_1) + \arg(z_2) \quad

Proof: Modulus of a Product

The modulus of a complex number z=reiθz = re^{i\theta} is given by z=r|z| = r

infoNote

Example: For z1=reiαz_1 = r e^{i\alpha} and z2=seiβz_2 = s e^{i\beta}


Step 1: Multiply z1z_1 and z2z_2:

z1z2=rsei(α+β)z_1 z_2 = rs e^{i(\alpha + \beta)}

Step 2: Take the modulus:

z1z2=rsei(α+β)=rs|z_1 z_2| = |rs e^{i(\alpha + \beta)}| = rs

Sincez1=r |z_1| = r and z2=s |z_2| = s, it follows that:

z1z2=z1×z2|z_1 z_2| = |z_1| \times |z_2| \quad
infoNote

Example: Illustrating eiπe^{i\pi} on an Argand Diagram

Using Euler's formula:

eiπ=cos(π)+isin(π)=1+0ie^{i\pi} = \cos(\pi) + i\sin(\pi) = -1 + 0i

On the Argand diagram:

eiπe^{i\pi} corresponds to the point (1,0)(-1, 0), which lies on the negative real axis.

infoNote

Example: Calculating iii^i

To evaluate iii^i, we use the exponential form of ii:

i=eiπ2i = e^{i\frac{\pi}{2}}

Raise both sides to the power of ii:

ii=(eiπ2)ii^i = \left( e^{i\frac{\pi}{2}} \right)^i

Simplify using (ab)c=abc(a^b)^c = a^{bc}

ii=ei2π2=eπ2i^i = e^{i^2 \frac{\pi}{2}} = e^{-\frac{\pi}{2}}

Thus:

ii=eπ20.2079i^i = e^{-\frac{\pi}{2}} \approx 0.2079

This surprising result shows that iii^i is a real number!

infoNote

Example: Finding ln(i)\ln(i)

To evaluate ln(i)\ln(i), recall that:

i=eiπ2i = e^{i\frac{\pi}{2}}

Taking the natural logarithm of both sides:

ln(i)=ln(eiπ2)\ln(i) = \ln\left( e^{i\frac{\pi}{2}} \right)

Using the property ln(ex)=x\ln(e^x) = x

ln(i)=iπ2\ln(i) = i\frac{\pi}{2}

Thus:

ln(i)=π2i\ln(i) = \frac{\pi}{2}i
infoNote

Key Takeaways

  • Argument of a Product:
arg(z1z2)=arg(z1)+arg(z2)\arg(z_1 z_2) = \arg(z_1) + \arg(z_2)
  • Modulus of a Product:
z1z2=z1×z2|z_1 z_2| = |z_1| \times |z_2|
Books

Only available for registered users.

Sign up now to view the full note, or log in if you already have an account!

500K+ Students Use These Powerful Tools to Master Exponential Form

Enhance your understanding with flashcards, quizzes, and exams—designed to help you grasp key concepts, reinforce learning, and master any topic with confidence!

40 flashcards

Flashcards on Exponential Form

Revise key concepts with interactive flashcards.

Try Further Maths Core Pure Flashcards

4 quizzes

Quizzes on Exponential Form

Test your knowledge with fun and engaging quizzes.

Try Further Maths Core Pure Quizzes

29 questions

Exam questions on Exponential Form

Boost your confidence with real exam questions.

Try Further Maths Core Pure Questions

27 exams created

Exam Builder on Exponential Form

Create custom exams across topics for better practice!

Try Further Maths Core Pure exam builder

50 papers

Past Papers on Exponential Form

Practice past papers to reinforce exam experience.

Try Further Maths Core Pure Past Papers

Other Revision Notes related to Exponential Form you should explore

Discover More Revision Notes Related to Exponential Form to Deepen Your Understanding and Improve Your Mastery

96%

114 rated

Exponential Form & de Moivre's Theorem

de Moivre's Theorem

user avatar
user avatar
user avatar
user avatar
user avatar

403+ studying

199KViews

96%

114 rated

Exponential Form & de Moivre's Theorem

Applications of de Moivre's Theorem

user avatar
user avatar
user avatar
user avatar
user avatar

321+ studying

192KViews

96%

114 rated

Exponential Form & de Moivre's Theorem

Roots of Complex Numbers

user avatar
user avatar
user avatar
user avatar
user avatar

462+ studying

186KViews
Load more notes

Join 500,000+ A-Level students using SimpleStudy...

Join Thousands of A-Level Students Using SimpleStudy to Learn Smarter, Stay Organized, and Boost Their Grades with Confidence!

97% of Students

Report Improved Results

98% of Students

Recommend to friends

500,000+

Students Supported

50 Million+

Questions answered