Photo AI

Last Updated Sep 27, 2025

Transformations using a Matrix Simplified Revision Notes

Revision notes with simplified explanations to understand Transformations using a Matrix quickly and effectively.

user avatar
user avatar
user avatar
user avatar
user avatar

380+ students studying

2.2.1 Transformations using a Matrix

Introduction to Matrix Transformations

Matrix transformations are a powerful way to represent geometric transformations in two dimensions. Each transformation can be expressed as a specific 2×22×2 matrix, which, when multiplied by a coordinate vector, results in a new position vector. These transformations include reflection, rotation, enlargement, and stretch, all centered at the origin unless stated otherwise.

Key Transformations and Their Matrices

Reflections

Reflections flip points across a line. The matrix for a reflection depends on the axis or line of reflection:

Reflection in the x-axis:

Matrix=(1001)\text{Matrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}

Reflection in the y-axis:

Matrix=(1001)\text{Matrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}

Reflection in the line y=xy = x:

Matrix=(0110)\text{Matrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}

Reflection in the line y=xy = -x:

Matrix=(0110)\text{Matrix} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}

Rotations

Rotations turn points about the origin by a specified angle θ\theta

Rotation through angle θ\theta (anticlockwise):

Matrix=(cosθsinθsinθcosθ)\text{Matrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}

For specific angles:

90$$° anticlockwise rotation:

Matrix=(0110)\text{Matrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}

180°180° rotation:

Matrix=(1001)\text{Matrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}

270°270° anticlockwise (or 90°90° clockwise):

Matrix=(0110)\text{Matrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}

Stretches

Stretches scale distances from the origin along one axis.

Stretch parallel to the xaxisx-axis by a factor kk:

Matrix=(k001)\text{Matrix} = \begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix}

Stretch parallel to the yaxisy-axis by a factor kk:

Matrix=(100k)\text{Matrix} = \begin{pmatrix} 1 & 0 \\ 0 & k \end{pmatrix}

Enlargement

Enlargement scales distances from the origin by a factor kk.

Enlargement by scale factor kk.

Matrix=(k00k)\text{Matrix} = \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}

Combining Transformations

When transformations are combined, the order of application matters. The resulting transformation matrix is obtained by multiplying the matrices of the individual transformations:

If a transformation represented by matrix AA is followed by another represented by matrix BB, the combined transformation is represented by BABA, not ABAB.

lightbulbExample

Example: To perform a 90°90° rotation followed by a reflection in the xaxisx-axis:


Rotation matrix RR:

R=(0110)R = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}

Reflection matrix RefxRef_x:

Refx=(1001)Ref_x = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}

Combined matrix Refx×RRef_x \times R

(1001)(0110)=(0110)\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}

Worked Examples

lightbulbExample

Example Find the transformation matrix for a reflection in y=xy = x followed by a rotation of 90°90° anticlockwise.


Reflection matrix:

(0110)\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}

Rotation matrix:

(0110)\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}

Combined matrix:

(0110)(0110)=(1001)\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}
lightbulbExample

Example: Illustrate the effects of the matrix

M=(2112)M = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}

on the unit square.


Applying MM to the vertices:

O=(00),A=(10),B=(11),C=(01)\text{O} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \, \text{A} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \, \text{B} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \, \text{C} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}

Resulting vertices:

MO=(00),MA=(21),MB=(33),MC=(12)M \text{O} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \, M \text{A} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \, M \text{B} = \begin{pmatrix} 3 \\ 3 \end{pmatrix}, \, M \text{C} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}

Note Summary

infoNote

Common Mistakes:

  1. Order of Matrix Multiplication: Multiplying matrices in the wrong order gives incorrect results.
  2. Misidentifying Transformations: Confusing reflection in y=xy = x with y=xy = -x
  3. Applying Incorrect Angles: Using clockwise angles when anticlockwise is required.
  4. Incorrect Scale Factor in Enlargements: Using k=0k = 0 or a negative k without context.
infoNote

Key Formulas:

  • Reflection Matrices:
In y=x:(0110), In y=x:(0110)\text{In } y = x: \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \text{ In } y = -x: \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}
  • Rotation Matrix:
(cosθsinθsinθcosθ)\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}
  • Enlargement Matrix:
(k00k)\begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}
  • Stretch Matrices:
Parallel to x-axis: (k001), Parallel to y-axis: (100k)\text{Parallel to x-axis: } \begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix}, \text{ Parallel to y-axis: } \begin{pmatrix} 1 & 0 \\ 0 & k \end{pmatrix}
  • Combined Transformation:
AB applies B first, then AAB \text{ applies } B \text{ first, then } A
Books

Only available for registered users.

Sign up now to view the full note, or log in if you already have an account!

500K+ Students Use These Powerful Tools to Master Transformations using a Matrix

Enhance your understanding with flashcards, quizzes, and exams—designed to help you grasp key concepts, reinforce learning, and master any topic with confidence!

30 flashcards

Flashcards on Transformations using a Matrix

Revise key concepts with interactive flashcards.

Try Further Maths Core Pure Flashcards

3 quizzes

Quizzes on Transformations using a Matrix

Test your knowledge with fun and engaging quizzes.

Try Further Maths Core Pure Quizzes

29 questions

Exam questions on Transformations using a Matrix

Boost your confidence with real exam questions.

Try Further Maths Core Pure Questions

27 exams created

Exam Builder on Transformations using a Matrix

Create custom exams across topics for better practice!

Try Further Maths Core Pure exam builder

50 papers

Past Papers on Transformations using a Matrix

Practice past papers to reinforce exam experience.

Try Further Maths Core Pure Past Papers

Other Revision Notes related to Transformations using a Matrix you should explore

Discover More Revision Notes Related to Transformations using a Matrix to Deepen Your Understanding and Improve Your Mastery

96%

114 rated

Transformations using Matrices

Geometric Transformations with Matrices

user avatar
user avatar
user avatar
user avatar
user avatar

268+ studying

199KViews

96%

114 rated

Transformations using Matrices

Invariant Points & Lines

user avatar
user avatar
user avatar
user avatar
user avatar

460+ studying

182KViews
Load more notes

Join 500,000+ A-Level students using SimpleStudy...

Join Thousands of A-Level Students Using SimpleStudy to Learn Smarter, Stay Organized, and Boost Their Grades with Confidence!

97% of Students

Report Improved Results

98% of Students

Recommend to friends

500,000+

Students Supported

50 Million+

Questions answered