Photo AI

Last Updated Sep 27, 2025

Equations of planes Simplified Revision Notes

Revision notes with simplified explanations to understand Equations of planes quickly and effectively.

user avatar
user avatar
user avatar
user avatar
user avatar

461+ students studying

6.2.1 Equations of planes

Introduction to Equations of Planes

A plane in 3D space can be represented in different forms. Two common representations are:

Vector Form:

r=a+λb+μc\mathbf{r} = \mathbf{a} + \lambda \mathbf{b} + \mu \mathbf{c}

where:

  • r\mathbf{r} is the position vector of any point on the plane.
  • a\mathbf{a} is the position vector of a fixed point on the plane.
  • b\mathbf{b} and c\mathbf{c} are non-parallel direction vectors lying on the plane.
  • λ\lambda and μ\mu are scalar parameters.

Cartesian Form:

ax+by+cz=dax + by + cz = d

where:

  • (a,b,c)(a, b, c) is the normal vector perpendicular to the plane.
  • dd is a constant.

Deriving the Cartesian Form from the Vector Form

Step 1: Write the Vector Form

r=a+λb+μc\mathbf{r} = \mathbf{a} + \lambda \mathbf{b} + \mu \mathbf{c}

Step 2: Identify Two Direction Vectors

Let:

ra=λb+μc\mathbf{r} - \mathbf{a} = \lambda \mathbf{b} + \mu \mathbf{c}

The vectors b\mathbf{b} and c\mathbf{c} lie on the plane.

Step 3: Use the Normal Vector

The normal vector n\mathbf{n} is perpendicular to both b\mathbf{b} and c\mathbf{c}, so:

n=b×c\mathbf{n} = \mathbf{b} \times \mathbf{c}

Step 4: Find the Cartesian Form

If n=(abc)\mathbf{n} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} and a=(x1y1z1)\mathbf{a} = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}, then:

a(xx1)+b(yy1)+c(zz1)=0a(x - x_1) + b(y - y_1) + c(z - z_1) = 0

which simplifies to:

ax+by+cz=dax + by + cz = d

where d=ax1+by1+cz1d = ax_1 + by_1 + cz_1

Worked Examples

infoNote

Example 1: Find the Vector Equation of a Plane

Find the vector equation of the plane passing through (1,2,3)(1, 2, 3) and containing the direction vectors b=(421)\mathbf{b} = \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix} and c=(112)c=(112)c=(112)\mathbf{c} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}


Step 1**: Write the vector equation:**

r=a+λb+μc\mathbf{r} = \mathbf{a} + \lambda \mathbf{b} + \mu \mathbf{c}

where a=(123)\mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}


Step 2**: Substitute values:**

r=(123)+λ(421)+μ(112)\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}

Result:

r=(1+4λ+μ22λ+μ3+λ+2μ)\mathbf{r} = \begin{pmatrix} 1 + 4\lambda + \mu \\ 2 - 2\lambda + \mu \\ 3 + \lambda + 2\mu \end{pmatrix}
infoNote

Example 2: Convert Vector Form to Cartesian Form

Convert the plane:

r=(123)+λ(421)+μ(112)\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}

into Cartesian form.


Step 1: Find the normal vector: Compute the cross-product of b=(421)\mathbf{b} = \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix} and c=(112)\mathbf{c} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}

n=ijk421112\mathbf{n} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 4 & -2 & 1 \\ 1 & 1 & 2 \end{vmatrix} =i((2)(2)(1)(1))j((4)(2)(1)(1))+k((4)(1)(2)(1))= \mathbf{i}((-2)(2) - (1)(1)) - \mathbf{j}((4)(2) - (1)(1)) + \mathbf{k}((4)(1) - (-2)(1))n=(576)\mathbf{n} = \begin{pmatrix} -5 \\ -7 \\ 6 \end{pmatrix}

Step 2: Substitute into the plane equation:

Let (x1,y1,z1)=(1,2,3)(x_1, y_1, z_1) = (1, 2, 3)

5(x1)7(y2)+6(z3)=0-5(x - 1) - 7(y - 2) + 6(z - 3) = 0

Step 3**: Simplify:**

5x7y+6z=5(1)7(2)+6(3)=11-5x - 7y + 6z = -5(-1) - 7(-2) + 6(-3) = 11

Result:

5x7y+6z=11-5x - 7y + 6z = 11
infoNote

Example 3: Plane Equation from Points

Find the Cartesian equation of the plane passing through (1,2,3)(1, 2, 3), (2,0,1)(2, 0, 1), and (0,1,4)(0, 1, 4)


Step 1: Find two direction vectors:

b=(210213)=(122)\mathbf{b} = \begin{pmatrix} 2 - 1 \\ 0 - 2 \\ 1 - 3 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ -2 \end{pmatrix}c=(011243)=(111)\mathbf{c} = \begin{pmatrix} 0 - 1 \\ 1 - 2 \\ 4 - 3 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}

Step 2: Find the normal vector:

n=b×c=ijk122111\mathbf{n} = \mathbf{b} \times \mathbf{c} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -2 & -2 \\ -1 & -1 & 1 \end{vmatrix}n=i((2)(1)(1)(2))j((1)(1)(1)(2))+k((1)(1)(1)(2))\mathbf{n} = \mathbf{i}((-2)(1) - (-1)(-2)) - \mathbf{j}((1)(1) - (-1)(-2)) + \mathbf{k}((1)(-1) - (-1)(-2))n=(433)\mathbf{n} = \begin{pmatrix} -4 \\ -3 \\ -3 \end{pmatrix}

Step 3: Write the Cartesian equation:

Use (1,2,3)(1, 2, 3)

4(x1)3(y2)3(z3)=0-4(x - 1) - 3(y - 2) - 3(z - 3) = 0

Step 4: Simplify:

4x3y3z=4(1)3(2)3(3)=22-4x - 3y - 3z = -4(-1) - 3(-2) - 3(-3) = -22

Result:

4x3y3z=22−4x - 3y - 3z = -22

Note Summary

infoNote

Common Mistakes:

  1. Incorrect cross-product calculations: Ensure the determinant is calculated carefully to find the normal vector.

  2. Mixing up direction and normal vectors: Direction vectors lie in the plane, while the normal vector is perpendicular to the plane.

  3. Forgetting to substitute a point for dd: In Cartesian form, d=ax1+by1+cz1d = ax_1 + by_1 + cz_1 for a point (x1,y1,z1)(x_1, y_1, z_1)

  4. Confusing the vector and Cartesian forms: The vector form involves direction vectors, while the Cartesian form uses the normal vector.

  5. Omitting terms in simplifications: Be careful to expand and simplify equations correctly.

infoNote

Key Formulas:

  1. Vector Form of a Plane:
r=a+λb+μc\mathbf{r} = \mathbf{a} + \lambda \mathbf{b} + \mu \mathbf{c}
  1. Cartesian Form of a Plane:
ax+by+cz=dax + by + cz = d
  1. Normal Vector Calculation:
n=b×c\mathbf{n} = \mathbf{b} \times \mathbf{c}
  1. Point Substitution for dd:
d=ax1+by1+cz1d = ax_1 + by_1 + cz_1
Books

Only available for registered users.

Sign up now to view the full note, or log in if you already have an account!

500K+ Students Use These Powerful Tools to Master Equations of planes

Enhance your understanding with flashcards, quizzes, and exams—designed to help you grasp key concepts, reinforce learning, and master any topic with confidence!

20 flashcards

Flashcards on Equations of planes

Revise key concepts with interactive flashcards.

Try Further Maths Core Pure Flashcards

2 quizzes

Quizzes on Equations of planes

Test your knowledge with fun and engaging quizzes.

Try Further Maths Core Pure Quizzes

29 questions

Exam questions on Equations of planes

Boost your confidence with real exam questions.

Try Further Maths Core Pure Questions

27 exams created

Exam Builder on Equations of planes

Create custom exams across topics for better practice!

Try Further Maths Core Pure exam builder

50 papers

Past Papers on Equations of planes

Practice past papers to reinforce exam experience.

Try Further Maths Core Pure Past Papers

Other Revision Notes related to Equations of planes you should explore

Discover More Revision Notes Related to Equations of planes to Deepen Your Understanding and Improve Your Mastery

96%

114 rated

Vector Planes

Combinations of Lines & Planes

user avatar
user avatar
user avatar
user avatar
user avatar

351+ studying

200KViews
Load more notes

Join 500,000+ A-Level students using SimpleStudy...

Join Thousands of A-Level Students Using SimpleStudy to Learn Smarter, Stay Organized, and Boost Their Grades with Confidence!

97% of Students

Report Improved Results

98% of Students

Recommend to friends

500,000+

Students Supported

50 Million+

Questions answered