Photo AI

Last Updated Sep 27, 2025

Continuous Random Variables Simplified Revision Notes

Revision notes with simplified explanations to understand Continuous Random Variables quickly and effectively.

user avatar
user avatar
user avatar
user avatar
user avatar

465+ students studying

16.1.2 Continuous Random Variables

Continuous Random Variables

  • Discrete random variables can only take discrete values.
    • Example: XB(3,0.25),X{0,1,2,3}X \sim B(3, 0.25), X \in \{0, 1, 2, 3\}
    • P(X=1.5)P(X = 1.5) does not make sense.
  • Continuous random variables can take values across a continuous scale, allowing us to model real-life occurrences such as heights of trees, masses of babies, etc.

Functions of Continuous Random Variables

Given the probability density function of a continuous random variable XX, it is possible to find the probability density function or cumulative distribution function of F(X)F(X) where FF is any function.

Worked Example

lightbulbExample

Example XX is a random variable that represents the length of the side of a square. The length of the side of the square is equally likely to take any value between 1 and 3.

Find the cumulative distribution function for the area of the square AA and hence its probability density function.


Step 1: Define the probability density function for the given variable:

f(x)={12for 1x30otherwisef(x) = \begin{cases} \frac{1}{2} & \text{for } 1 \leq x \leq 3 \\ 0 & \text{otherwise} \end{cases}

Step 2: Determine the cumulative distribution function for this variable:

F(x)=1x12dx=[12x]1x=12x12F(x) = \int_1^x \frac{1}{2} \, dx = \left[ \frac{1}{2}x \right]_1^x = \frac{1}{2}x - \frac{1}{2}

Thus:

F(x)={0,x<112x12,1x31,x>3F(x) = \begin{cases} 0, & x < 1 \\ \frac{1}{2}x - \frac{1}{2}, & 1 \leq x \leq 3 \\ 1, & x > 3 \end{cases}

Step 3: State the relationship between the two variables:

  • XX = length of the side of the square.
  • AA = area of the square. Thus:
A=X2A = X^2

Step 4: Define the cumulative distribution function (CDFCDF) of the target distribution in terms of probabilities:

G(a)=P(Aa)G(a) = P(A \leq a)

Using GG to define the CDFCDF of AA.


Step 5: Rewrite the above cumulative distribution function in terms of the original variable. This rearranges to make the original variable the subject:

G(a)=P(X2a)=P(aXa)G(a) = P(X^2 \leq a) = P(-\sqrt{a} \leq X \leq \sqrt{a})

At this point, check whether the two limits make sense. In this case, XX can only take values between 1 and 3 from its initial definition.

=P(1Xa)(This is G(A)).= P(1 \leq X \leq \sqrt{a}) \quad \text{(This is G(A))}.

Step 6: Evaluate the probability using the original cumulative distribution function:

P(1Xa)=F(a)F(1)P(1 \leq X \leq \sqrt{a}) = F(\sqrt{a}) - F(1)=12a120=12a12= \frac{{1}}{2}\sqrt a - \frac{1}{2} - 0 = \frac{1}{2} \sqrt{a} - \frac{1}{2}

(Remember to state the domain):

G(a)={0a<112a121a9(since 1x3 and A=X2)1a>9G(a) = \begin{cases} 0 & a < 1 \\ \frac{1}{2} \sqrt{a} - \frac{1}{2} & 1 \leq a \leq 9 \quad (\text{since } 1 \leq x \leq 3 \text{ and } A = X^2) \\ 1 & a > 9 \end{cases}

Step 7: If asked to find the probability density function, we find that G(A)=g(A)G'(A) = g(A):

g(a)=G(a)=dda(12a1212)=14a12g(a) = G'(a) = \frac{d}{da} \left( \frac{1}{2} a^{\frac{1}{2}} - \frac{1}{2} \right) = \frac{1}{4} a^{-\frac{1}{2}}

Thus:

g(a)={14a121a90otherwiseg(a) = \begin{cases} \frac{1}{4} a^{-\frac{1}{2}} & 1 \leq a \leq 9 \\ 0 & \text{otherwise} \end{cases}
infoNote

Past Paper Example

Q4 (June 2010, Q8)

The continuous random variable SS has a probability density function given by:

f(s)={83s31s20otherwisef(s) = \begin{cases} \frac{8}{3s^{-3}} & 1 \leq s \leq 2 \\ 0 & \text{otherwise} \end{cases}

An isosceles triangle has equal sides of length SS, and the angle between them is 30°. (See diagram.)

(i) Find the (cumulative) distribution function of the area XX of the triangle, and hence show that the probability density function of XX is 13x2\frac{1}{3x^2} over an interval to be stated.

(ii) Find the median value of XX.


Solution: i)

f(s)=83s3F(s)=1s83s3ds=[43s2]1sf(s) = \frac{8}{3} s^{-3} \quad \Rightarrow \quad F(s) = \int_1^s \frac{8}{3} s^{-3} \, ds = \left[ -\frac{4}{3} s^{-2} \right]_1^s=43s2+43=4343s2= -\frac{4}{3} s^{-2} + \frac{4}{3} = \frac{4}{3} - \frac{4}{3} s^{-2}

Thus:

F(s)={0s<14343s21s21s>2F(s) = \begin{cases} 0 & s < 1 \\ \frac{4}{3} - \frac{4}{3} s^{-2} & 1 \leq s \leq 2 \\ 1 & s > 2 \end{cases}

The area of the triangle is given by:

X=12S2sin30=14S2X = \frac{1}{2} S^2 \sin 30^\circ = \frac{1}{4} S^2

Thus:

G(x)=P(Xx)=P(14S2x)G(x) = P(X \leq x) = P\left( \frac{1}{4} S^2 \leq x \right)=P(S24x)=P(2xS2x)= P(S^2 \leq 4x) = P(-2\sqrt{x} \leq S \leq 2\sqrt{x})=P(1S2x)since1S2= P(1 \leq S \leq 2\sqrt{x}) \quad \text{since} \quad 1 \leq S \leq 2G(x)=F(2x)F(1)\Rightarrow G(x) = F(2\sqrt{x}) - \cancel{F(1)}=4343(2x)2=4343×14x=4313x= \frac{4}{3} - \frac{4}{3}(2\sqrt{x})^{-2} = \frac{4}{3} - \frac{\cancel{4}}{3} \times \frac{1}{\cancel 4x} = \frac{4}{3} - \frac{1}{3x}

Thus:

G(x)={0x<144313x14x11x>1G(x) = \begin{cases} 0 & x < \frac{1}{4} \\ \frac{4}{3} - \frac{1}{3x} & \frac{1}{4} \leq x \leq 1 \\ 1 & x > 1 \end{cases}

From the given diagram, we note that 1S21 \leq S \leq 2 and x=14S2x = \frac{1}{4} S^2.

Thus:

G(x)=4313x1G(x)=13x2=13x2(as required)G(x) = \frac{4}{3} - \frac{1}{3}x^{-1} \Rightarrow G'(x) = \frac{1}{3}x^{-2}=\frac {1}{3x^2} \quad (\text{as required})

Thus:

g(x)={13x214x10otherwiseg(x) = \begin{cases} \frac {1}{3x^2} & \frac{1}{4} \leq x \leq 1 \\ 0 & \text{otherwise} \end{cases}

Solution: (ii) Find the median value of xx.

The median is xx such that G(x)=0.5G(x) = 0.5:

4313x=0.513x=561=15x6\frac{4}{3} - \frac{1}{3x} = 0.5 \quad \Rightarrow \quad -\frac{1}{3x} = -\frac{5}{6} \quad \Rightarrow \quad 1 = \frac{15x}{6}

Thus:

x=615=25Median is25x = \frac{6}{15} = \frac{2}{5} \quad \Rightarrow \text{Median is} \quad \frac{2}{5}

Mean and Variance of Continuous Random Variables (CRVs)

infoNote

Recap of Mean and Variance of Discrete Random Variables:

Mean=E(X)=xp\text{Mean} = E(X) = \sum x p

Variance=E(X2)E(X)2=x2p(xp)2\text{Variance} = E(X^2) - E(X)^2 = \sum x^2 p - \left( \sum x p \right)^2

For CRVs, the concept of mean and variance does not change.

image

To calculate E(X) , we take all the x values multiplied by the corresponding p -values, then calculate the sum.

As the number of strips becomes infinite, xp(x)\sum x p(x) becomes xp(x)dx.\int x p(x) dx .

image

For CRVs:

E(X)=xp(x)dxE(X) = \int x p(x) dx

E(X2)=x2p(x)dxE(X^2) = \int x^2 p(x) dx

Var(X)=E(X2)E(X)2\text{Var}(X) = E(X^2) - E(X)^2

Where p(x) is the probability density function.

infoNote

Worked Example


a) E(Y)=04yf(y)dy=04yy8dy=1804y2dy=[y3/3]804E(Y) = \int_0^4 y f(y) dy = \int_0^4 y \frac{y}{8} dy = \frac{1}{8} \int_0^4 y^2 dy = \frac{[y^3/3]}{8} \Bigg|_0^4

=4324=6424=83= \frac{4^3}{24} = \frac{64}{24} = \frac{8}{3}


b) Var(Y)=E(Y2)E(Y)2\text{Var}(Y) = E(Y^2) - E(Y)^2

E(Y2)=04y2f(y)dy=1804y3dy=[y4/4]804=4432=25632=8E(Y^2) = \int_0^4 y^2 f(y) dy = \frac{1}{8} \int_0^4 y^3 dy = \frac{[y^4/4]}{8} \Bigg|_0^4 = \frac{4^4}{32} = \frac{256}{32} = 8

Var(Y)=8(83)2=8649=729649=89\text{Var}(Y) = 8 - \left(\frac{8}{3}\right)^2 = 8 - \frac{64}{9} = \frac{72}{9} - \frac{64}{9} = \frac{8}{9}


c) Remember: σ=Variance\sigma = \sqrt{\text{Variance}}

σ=89=223\sigma = \sqrt{\frac{8}{9}} = \frac{2\sqrt{2}}{3}


d) P(Y>μ)P(Y > \mu)

P(Y>83)=8/34y8dy=116[y28/34]=4216(83)2P(Y > \frac{8}{3}) = \int_{8/3}^4 \frac{y}{8} dy = \frac{1}{16} \Bigg[ y^2 \Bigg|_{8/3}^4 \Bigg] = \frac{4^2}{16} - \left(\frac{8}{3}\right)^2

=1616649×16=59= \frac{16}{16} - \frac{64}{9 \times 16} = \frac{5}{9}


e) Var(3Y+2)=32×Var(Y)=9×89=8\text{Var}(3Y + 2) = 3^2 \times \text{Var}(Y) = 9 \times \frac{8}{9} = 8


f) E(Y+2)=83+2=143E(Y + 2) = \frac{8}{3} + 2 = \frac{14}{3}


Remember:

Var(aX+b)=a2Var(X),E(aX+b)=aE(X)+b\text{Var}(aX + b) = a^2 \text{Var}(X), \quad E(aX + b) = aE(X) + b

Median, Mode, and Skewness of CRV

Mode

The mode of a continuous random variable (CRV) is the maximum of its probability density function (if a maximum exists).

lightbulbExample

Example The continuous random variable XX has a probability density function given by:

f(x)={380(8+2xx2)for 0x4,0otherwise.f(x) = \begin{cases} \frac{3}{80} (8 + 2x - x^2) & \text{for } 0 \leq x \leq 4, \\ 0 & \text{otherwise.} \end{cases}

Tasks

a) Sketch the probability density function of XX.

b) Find the mode of XX.


a) f(x)=380(x22x8)=380(x4)(x+2)f(x) = \frac{3}{80}(x^2 - 2x - 8) = \frac{-3}{80}(x - 4)(x + 2)

                                      (Root at $ x = 4$  or  $x = -2$ 

f(0)=380(8)=310f(0) = \frac{-3}{80}(8) = \frac{3}{10}

LHS (left-hand side) is in (0,310)(0, \frac{3}{10}) .

f(4)=380(422(4)8)=0f(4) = \frac{-3}{80}(4^2 - 2(4) - 8) = 0

RHS (right-hand side) is (4,0)(4, 0) .


b) The mode may or may not be a local maximum as found by differentiation.

In this P.D.F., differentiating and finding the stationary point would lead to a mode outside of the domain of validity of the P.D.F. Here, from observing where the function is valid, we see the mode is f(0) .

(In this question, the mode is found by differentiation.)

image

f(x)=380(8+2xx2)0x4otherwisef(x) = \frac{3}{80} (8 + 2x - x^2) \quad 0 \leq x \leq 4 \quad \text{otherwise}

(i.e., mode on this function is the stationary point)

f(x)=380(22x)=0f'(x) = \frac{3}{80} (2 - 2x) = 0

2=2xx=1\Rightarrow 2 = 2x \Rightarrow x = 1

Mode = xvaluex -value point with the highest frequency.

:::

Median

The median is the value of xx to the left of which 0.5 of the probability lies and to the right of which 0.5 of the probability lies.

Method 1: Using P.D.F.

image

Method 2: Use C.D.F.

Solve F(x)=0.5F(x) = 0.5

lightbulbExample

Example: The continuous random variable XX has a cumulative distribution function given by:

F(x)={0x<0,x260x2,x23+2x22x3,1x>3.F(x) = \begin{cases} 0 & x < 0, \\ \frac{x^2}{6} & 0 \leq x \leq 2, \\ -\frac{x^2}{3} + 2x - 2 & 2 \leq x \leq 3, \\ 1 & x > 3. \end{cases}

Tasks

a) Find the median value of XX.

b) Find the quartiles and the interquartile range (IQR) of XX.

Note: Ensure answers are given to 3 decimal places.


a) F(x)=0.5F(x) = 0.5

0.5=x26x2=3x=30.5 = \frac{x^2}{6} \Rightarrow x^2 = 3 \Rightarrow x = \sqrt{3}

(Since 31.732\sqrt{3} \approx 1.732 and 0x20 \leq x \leq 2 , this is valid.)


b) F(x)=0.75F(x) = 0.75 (Upper quartile)

0.75=x26x2=4.5x=3220.75 = \frac{x^2}{6} \Rightarrow x^2 = 4.5 \Rightarrow x = \frac{3\sqrt{2}}{2}

(But this is not valid, so we use the second part of the function.)

F(x)=x33+2x2=0.75F(x) = \frac{-x^3}{3} + 2x - 2 = 0.75

x33+2x2.75=0x=61322.154\Rightarrow -\frac{x^3}{3} + 2x - 2.75 = 0 \Rightarrow x = \frac{6 - \sqrt{13}}{2} \approx 2.154

Thus, UQ=61322.154.\text{UQ} = \frac{6 - \sqrt{13}}{2} \approx 2.154 .

LQ:LQ: F(x)=0.25F(x) = 0.25

0.25=x26x2=32x=621.2250.25 = \frac{x^2}{6} \Rightarrow x^2 = \frac{3}{2} \Rightarrow x = \frac{\sqrt{6}}{2} \approx 1.225

Thus, LQ=621.225\text{LQ} = \frac{\sqrt{6}}{2} \approx 1.225

Interquartile Range (IQR):

IQR=632620.909IQR = \frac{6 - \sqrt{3}}{2} - \frac{\sqrt{6}}{2} \approx 0.909

Books

Only available for registered users.

Sign up now to view the full note, or log in if you already have an account!

500K+ Students Use These Powerful Tools to Master Continuous Random Variables

Enhance your understanding with flashcards, quizzes, and exams—designed to help you grasp key concepts, reinforce learning, and master any topic with confidence!

60 flashcards

Flashcards on Continuous Random Variables

Revise key concepts with interactive flashcards.

Try Further Maths Further Statistics 1 Flashcards

6 quizzes

Quizzes on Continuous Random Variables

Test your knowledge with fun and engaging quizzes.

Try Further Maths Further Statistics 1 Quizzes

29 questions

Exam questions on Continuous Random Variables

Boost your confidence with real exam questions.

Try Further Maths Further Statistics 1 Questions

27 exams created

Exam Builder on Continuous Random Variables

Create custom exams across topics for better practice!

Try Further Maths Further Statistics 1 exam builder

50 papers

Past Papers on Continuous Random Variables

Practice past papers to reinforce exam experience.

Try Further Maths Further Statistics 1 Past Papers

Other Revision Notes related to Continuous Random Variables you should explore

Discover More Revision Notes Related to Continuous Random Variables to Deepen Your Understanding and Improve Your Mastery

96%

114 rated

Discrete Probability Distributions

Discrete Random Variables

user avatar
user avatar
user avatar
user avatar
user avatar

409+ studying

198KViews

96%

114 rated

Discrete Probability Distributions

Probability Density Function

user avatar
user avatar
user avatar
user avatar
user avatar

285+ studying

193KViews

96%

114 rated

Discrete Probability Distributions

Uniform Distribution

user avatar
user avatar
user avatar
user avatar
user avatar

344+ studying

181KViews

96%

114 rated

Discrete Probability Distributions

Counting Methods, Permutations and Combinations

user avatar
user avatar
user avatar
user avatar
user avatar

364+ studying

184KViews
Load more notes

Join 500,000+ A-Level students using SimpleStudy...

Join Thousands of A-Level Students Using SimpleStudy to Learn Smarter, Stay Organized, and Boost Their Grades with Confidence!

97% of Students

Report Improved Results

98% of Students

Recommend to friends

500,000+

Students Supported

50 Million+

Questions answered