Photo AI

Last Updated Sep 27, 2025

General Binomial Expansion Simplified Revision Notes

Revision notes with simplified explanations to understand General Binomial Expansion quickly and effectively.

user avatar
user avatar
user avatar
user avatar
user avatar

342+ students studying

4.2.1 General Binomial Expansion

Binomial series:

infoNote
(a+b)n=an+(n1)an1b+(n2)an2b2++(nr)anrbr++bn(nN)(a + b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \ldots + \binom{n}{r}a^{n-r}b^r + \ldots + b^n \quad (n \in \mathbb{N})

here (nr)=n!r!(nr)!\dbinom{n}{r} = \dfrac{n!}{r!(n-r)!}

(1+x)n=1+nx+n(n1)2!x2+n(n1)...(nr+1)r!xr+(x<1,nR)(1 + x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)...(n-r+1)}{r!}x^r + \ldots \quad (|x| < 1, n \in \mathbb{R})

When expanding brackets of the form (1+x)n (1 + x)^n where nn is not necessarily a positive integer, the standard formula can be used.

infoNote

Example: Expand (1x)3(1 - x)^3

1+n(x)1!+n(n1)(x2)2!+n(n1)(n2)(x3)3!+n(n1)(n2)(n3)(x4)4!+1 + \frac{n(x)}{1!} + \frac{n(n-1)(x^2)}{2!} + \frac{n(n-1)(n-2)(x^3)}{3!} + \frac{n(n-1)(n-2)(n-3)(x^4)}{4!} + \ldots=10!+(3)(x)1!+(3)(2)(x2)2!+(3)(2)(1)(x3)3!+(3)(2)(1)(0)(x4)4!+(3)(2)(1)(0)(1)(x5)5!= \frac{1}{0!} + \frac{(3)(x)}{1!} + \frac{(3)(2)(x^2)}{2!} + \frac{(3)(2)(1)(x^3)}{3!} + \cancel {\frac{(3)(2)(1)(0)(x^4)}{4!}} + \cancel {\frac{(3)(2)(1)(0)(-1)(x^5)}{5!}}\ldotsThe following terms have a factor of 00\text{The following terms have a factor of 0} \Rightarrow 0

Thus, the expansion is:

=1+3x+3x2+x3= 1 + 3x + 3x^2 + x^3

infoNote

Example: Expand up to and including x3,(1+2x)1x^3, (1 + 2x)^{-1}

1+(1)(2x)11!+(1)(2)(2x)22!+(1)(2)(3)(2x)33!+1 + \frac{(-1)(2x)^1}{1!} + \frac{(-1)(-2)(2x)^2}{2!} + \frac{(-1)(-2)(-3)(2x)^3}{3!} + \ldots’x’ term in this case is 2x and this must be placed in brackets.\text{'x' term in this case is 2x and this must be placed in brackets.}=12x+4x28x3+= 1 - 2x + 4x^2 - 8x^3 + \ldots

infoNote

Example: Expand (112x)12\left(1 - \frac{1}{2}x\right)^{\frac{1}{2}} up to and including the x3x^3 term

1+(0.5)(0.5x)1!+(0.5)(0.5)(0.5x)22!+(0.5)(0.5)(1.5)(0.5x)33!+1 + \frac{(0.5)(-0.5x)}{1!} + \frac{(0.5)(-0.5)(-0.5x)^2}{2!} + \frac{(0.5)(-0.5)(-1.5)(-0.5x)^3}{3!} + \ldots=114x132x21128x3+= 1 - \frac{1}{4}x - \frac{1}{32}x^2 - \frac{1}{128}x^3 + \ldots

Challenge: Lottery Jackpot Probability

infoNote

The lottery jackpot is won by choosing 6 numbers correctly out of 49. What is the probability of winning the jackpot?

Calculation

  • The number of ways to choose 66 numbers out of 4949 is given by the binomial coefficient: (496)=49!6!(496)!\dbinom{49}{6} = \dfrac{49!}{6!(49-6)!}

  • Calculating this, we get: (496)=:highlight[13,983,816]\dbinom{49}{6} = :highlight[13,983,816]

  • Therefore, the probability of winning the jackpot is: 1:highlight[13,983,816]\dfrac{1}{:highlight[13,983,816]}

Expanding Large Power Brackets

infoNote

Example: Expand (2+x)6(2 + x)^6 fully


  1. General Term in Binomial Expansion: (a+b)n=k=0n(nk)ankbk(a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k

  1. Apply to (2+x)62 + x)^6:
  • Here a=2, b=xa = 2,\ b = x, and n=6n = 6.

  1. Consider each term separately:
  • Constant Term: (2)6×(x)0×(60)=:highlight[64](2)^6 \times (x)^0 \times \binom{6}{0} = :highlight[64]

  • x1x^1 Term: (2)5×(x)1×(61)=:highlight[192]x(2)^5 \times (x)^1 \times \binom{6}{1} = :highlight[192]x

  • x2x^2 Term: (2)4×(x)2×(62)=:highlight[240]x2(2)^4 \times (x)^2 \times \binom{6}{2} = :highlight[240]x^2

  • x3x^3 Term: (2)3×(x)3×(63)=:highlight[160]x3(2)^3 \times (x)^3 \times \binom{6}{3} = :highlight[160]x^3

  • x4x^4 Term: (2)2×(x)4×(64)=:highlight[60]x4(2)^2 \times (x)^4 \times \binom{6}{4} = :highlight[60]x^4

  • x5x^5 Term: (2)1×(x)5×(65)=:highlight[12]x5(2)^1 \times (x)^5 \times \binom{6}{5} = :highlight[12]x^5

  • x6x^6 Term: (2)0×(x)6×(66)=x6(2)^0 \times (x)^6 \times \binom{6}{6} = x^6


  1. Combine all terms: (2+x)6=64+192x+240x2+160x3+60x4+12x5+x6(2 + x)^6 = 64 + 192x + 240x^2 + 160x^3 + 60x^4 + 12x^5 + x^6

Summary

  • The fully expanded form of (2+x)6(2 + x)^6 is: 64+192x+240x2+160x3+60x4+12x5+x664 + 192x + 240x^2 + 160x^3 + 60x^4 + 12x^5 + x^6

Binomial Expansion Examples

infoNote

Example 1: Expand (3+2x)4(3 + 2x)^4


  1. General Term in Binomial Expansion: (a+b)n=k=0n(nk)ankbk(a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k

  1. Apply to (3+2x)4(3 + 2x)^4:
  • Here a=3, b=2x, and n=4a = 3,\ b = 2x,\ and\ n = 4.

  1. Calculate each term: | 4C0{}^4C_0 | 4C1{}^4C_1 | 4C2{}^4C_2 | 4C3{}^4C_3 | 4C4{}^4C_4 | |---|---|---|---|---| | (3)4(3)^4 | (3)3(3)^3 | (3)2(3)^2 | (3)1(3)^1 | (3)0(3)^0 | | (2x)0(2x)^0 | (2x)1(2x)^1 | (2x)2(2x)^2 | (2x)3(2x)^3 | (2x)4(2x)^4 |
14641
8127931
12x2x4x24x^28x38x^316x416x^4
:highlight[81]:highlight[81]:highlight[216]x:highlight[216]x:highlight[216]x2:highlight[216]x^2:highlight[96]x3:highlight[96]x^3:highlight[16]x4:highlight[16]x^4
  • (40)(3)4(2x)0=1811=81\binom{4}{0}\cdot(3)^4\cdot(2x)^0 = 1 \cdot 81 \cdot 1 = 81
  • (41)(3)3(2x)1=4272x=216x\binom{4}{1}(3)^3(2x)^1 = 4 \cdot 27 \cdot 2x = 216x
  • (42)(3)2(2x)2=694x2=216x2\binom{4}{2}(3)^2(2x)^2 = 6 \cdot 9 \cdot 4x^2 = 216x^2
  • (43)(3)1(2x)3=438x3=96x3\binom{4}{3}(3)^1(2x)^3 = 4 \cdot 3 \cdot 8x^3 = 96x^3
  • (44)(3)0(2x)4=1116x4=16x4\binom{4}{4}(3)^0(2x)^4 = 1 \cdot 1 \cdot 16x^4 = 16x^4

  1. Combine all terms: (3+2x)4=81+216x+216x2+96x3+16x4(3 + 2x)^4 = 81 + 216x + 216x^2 + 96x^3 + 16x^4

infoNote

Example 2: Expand (62x)5(6 - 2x)^5

  1. Apply to (62x)5(6 - 2x)^5:
  • Here a=6, b=2x, and n=5a = 6,\ b = -2x,\ and\ n = 5.
  1. Calculate each term: | 5C0{}^5C_0 | 5C1{}^5C_1 | 5C2{}^5C_2 | 5C3{}^5C_3 | 5C4{}^5C_4 | 5C5{}^5C_5 | |---|---|---|---|---|---| | (6)5(6)^5 | (6)4(6)^4 | (6)3(6)^3 | (6)2(6)^2 | (6)1(6)^1 | (6)0(6)^0 | | (2x)0(-2x)^0 | (2x)1(-2x)^1 | (2x)2(-2x)^2 | (2x)3(-2x)^3 | (2x)4(-2x)^4 | (2x)5(-2x)^5 |
15101051
777612962163661
12x-2x4x2-4x^28x3-8x^316x4-16x^432x5-32x^5
:highlight[7776]:highlight[7776]:highlight[12960]x:highlight[-12960]x+:highlight[8640]x2+:highlight[8640]x^2:highlight[2880]x3-:highlight[2880]x^3+:highlight[480]x4+:highlight[480]x^4:highlight[32]x5-:highlight[32]x^5
  • (50)(6)5(2x)0=177761=7776\binom{5}{0}\cdot(6)^5\cdot(-2x)^0 = 1 \cdot 7776 \cdot 1 = 7776
  • (51)(6)4(2x)1=512962x=12960x\binom{5}{1} \cdot (6)^4 \cdot (-2x)^1 = 5 \cdot 1296 \cdot -2x = -12960x
  • (52)(6)3(2x)2=102164x2=8640x2\binom{5}{2}\cdot(6)^3\cdot(-2x)^2 = 10 \cdot 216 \cdot 4x^2 = 8640x^2
  • (53)(6)2(2x)3=10368x3=2880x3\binom{5}{3}\cdot(6)^2\cdot(-2x)^3 = 10 \cdot 36 \cdot -8x^3 = -2880x^3
  • (54)(6)1(2x)4=5616x4=480x4\binom{5}{4}\cdot(6)^1\cdot(-2x)^4 = 5 \cdot 6 \cdot 16x^4 = 480x^4
  • (55)(6)0(2x)5=1132x5=32x5\binom{5}{5}\cdot(6)^0\cdot(-2x)^5 = 1 \cdot 1 \cdot -32x^5 = -32x^5
  1. Combine all terms: (62x)5=777612960x+8640x22880x3+480x432x5(6 - 2x)^5 = 7776 - 12960x + 8640x^2 - 2880x^3 + 480x^4 - 32x^5

Binomial Expansion with Specific Terms

infoNote

Example 1: Expand (113x)4(1 - \frac{1}{3}x)^4

  1. Apply to (113x)4(1 - \frac{1}{3}x)^4:
  • Here a=1, b=13x, and n=4a = 1,\ b = -\frac{1}{3}x,\ and\ n = 4.
  1. Calculate each term: | 4C4{}^4C_4 | 4C3{}^4C_3 | 4C2{}^4C_2 | 4C1{}^4C_1 | 4C0{}^4C_0 | |---|---|---|---|---| | 141^4 | 131^3 | 121^2 | 111^1 | 101^0 | | (13x)0(-\frac{1}{3}x)^0 | (13x)1(-\frac{1}{3}x)^1 | (13x)2(-\frac{1}{3}x)^2 | (13x)3(-\frac{1}{3}x)^3 | (13x)4(-\frac{1}{3}x)^4 |
14641
11111
1(13x)(-\frac{1}{3}x)(13x)2(-\frac{1}{3}x)^2(13x)3(-\frac{1}{3}x)^3(13x)4(-\frac{1}{3}x)^4
1:highlight[4]3x-\frac{:highlight[4]}{3}x:highlight[2]3x2\frac{:highlight[2]}{3}x^2:highlight[4]27x3-\frac{:highlight[4]}{27}x^3:highlight[4]81x4\frac{:highlight[4]}{81}x^4
  • (40)(1)4(13x)0=111=1\binom{4}{0}\cdot(1)^4\cdot(-\frac{1}{3}x)^0 = 1 \cdot 1 \cdot 1 = 1
  • (41)(1)3(13x)1=4113x=43x\binom{4}{1}\cdot(1)^3\cdot(-\frac{1}{3}x)^1 = 4 \cdot 1 \cdot -\frac{1}{3}x = -\frac{4}{3}x
  • (42)(1)2(13x)2=6119x2=23x2\binom{4}{2}\cdot(1)^2\cdot(-\frac{1}{3}x)^2 = 6 \cdot 1 \cdot \frac{1}{9}x^2 = \frac{2}{3}x^2
  • (43)(1)1(13x)3=41127x3=427x3\binom{4}{3}\cdot(1)^1\cdot(-\frac{1}{3}x)^3 = 4 \cdot 1 \cdot -\frac{1}{27}x^3 = -\frac{4}{27}x^3
  • (44)(1)0(13x)4=11181x4=181x4\binom{4}{4}\cdot(1)^0\cdot(-\frac{1}{3}x)^4 = 1 \cdot 1 \cdot \frac{1}{81}x^4 = \frac{1}{81}x^4
  1. Combine all terms: (113x)4=143x+23x2427x3+181x4(1 - \frac{1}{3}x)^4 = 1 - \frac{4}{3}x + \frac{2}{3}x^2 - \frac{4}{27}x^3 + \frac{1}{81}x^4

Finding Particular Terms

infoNote

Example: Find the coefficient of the x6x^6 term in (2+x)12(2 + x)^{12}

  1. General Term: Term=(12k)(2)12k(x)k\text{Term} = \binom{12}{k} (2)^{12-k} (x)^k

  2. For x6x^6 term: k=6k = 6

Term=(126)(2)126(x)6=(126)(2)6x6\text{Term} = \binom{12}{6} (2)^{12-6} (x)^6 = \binom{12}{6} (2)^6 x^6

  1. Calculate the coefficient: (126)=924\binom{12}{6} = 924

(2)6=64(2)^6 = 64

Coefficient=924×64=:highlight[59136]\text{Coefficient} = 924 \times 64 = :highlight[59136]

So, the coefficient of the x6x^6 term is 59136.


infoNote

Example: Expand (3+12x)6(3 + \frac{1}{2}x)^6 up to and including the x2x^2 term, in ascending powers of x.

  1. General Term: Term=(6k)(3)6k(12x)k\text{Term} = \binom{6}{k} (3)^{6-k} \left(\frac{1}{2}x\right)^k

  2. Calculate each term up to x2x^2:

  • Constant term (x0(x^0): (60)(3)6(12x)0=17291=:highlight[729]\binom{6}{0}\cdot (3)^6 \cdot\left(\frac{1}{2}x\right)^0 = 1 \cdot 729 \cdot 1 = :highlight[729]

  • x1x^1 term: (61)(3)5(12x)1=624312x=:highlight[729]x\binom{6}{1}\cdot (3)^5 \cdot\left(\frac{1}{2}x\right)^1 = 6 \cdot 243 \cdot \frac{1}{2}x = :highlight[729]x

  • x2x^2 term: (62)(3)4(12x)2=158114x2=:highlight[304.5]x2\binom{6}{2} \cdot(3)^4 \cdot\left(\frac{1}{2}x\right)^2 = 15 \cdot 81 \cdot \frac{1}{4}x^2 = :highlight[304.5]x^2

  1. Combine these terms: (3+12x)6729+729x+12154x2+...(3 + \frac{1}{2}x)^6 \approx 729 + 729x + \frac {1215}{4}x^2+...

infoNote

Example: Expand (1+2x)6(1 + 2x)^6 in ascending powers of x up to the x2x^2 term. Use this expansion to approximate 1.0461.04^6.


Step 1: Expand (1+2x)6(1 + 2x)^6

  1. General Term in Binomial Expansion: (a+b)n=k=0n(nk)ankbk(a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k

  2. Apply to (1+2x)6(1 + 2x)^6:

  • Here a=1, b=2x, and n=6.a = 1,\ b = 2x,\ and\ n = 6.
  1. Calculate each term up to x2x^2:
  • Constant term (x0)(x^0): (60)(1)6(2x)0=1\binom{6}{0}\cdot(1)^6\cdot(2x)^0 = 1

  • x1x^1 term: (61)(1)5(2x)1=612x=:highlight[12]x\binom{6}{1}\cdot(1)^5\cdot(2x)^1 = 6 \cdot 1 \cdot 2x = :highlight[12]x

  • x2x^2 term: (62)(1)4(2x)2=1514x2=:highlight[60]x2\binom{6}{2}\cdot(1)^4\cdot(2x)^2 = 15 \cdot 1 \cdot 4x^2 = :highlight[60]x^2

  1. Combine these terms: (1+2x)61+12x+60x2+(1 + 2x)^6 \approx 1 + 12x + 60x^2 + \dots

Step 2: Use this expansion to approximate 1.0461.04^6

  1. Set up the approximation:
  • Let 1+2x=:highlight[1.04].1 + 2x = :highlight[1.04].
  1. Solve for xx:
  • 1+2x=1.041 + 2x = 1.04
  • 2x=0.042x = 0.04
  • x=:highlight[0.02]x = :highlight[0.02]
  1. Substitute x=0.02x = 0.02 into the expansion: 1.0461+12(0.02)+60(0.02)21.04^6 \approx 1 + 12(0.02) + 60(0.02)^2

  2. Calculate each term:

  • 12(0.02)=0.2412(0.02) = 0.24
  • 60(0.02)2=60(0.0004)=0.02460(0.02)^2 = 60(0.0004) = 0.024
  1. Combine these values: 1.0461+0.24+0.024=:highlight[1.264]1.04^6 \approx 1 + 0.24 + 0.024 = :highlight[1.264]

Final Approximation

1.046:highlight[1.264]1.04^6 \approx :highlight[1.264]


Further Binomial Expansions

infoNote

Example: Expand (x+1x)4\left( x + \frac{1}{x} \right)^4

  1. General Term in Binomial Expansion: (a+b)n=k=0n(nk)ankbk(a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k

  2. Apply to (x+1x)4\left( x + \frac{1}{x} \right)^4:

  • Here a=x, b=1x, and n=4a = x,\ b = \frac{1}{x},\ and \ n = 4.
  1. Calculate each term:
  • (40)(x)4(1x)0=x4\binom{4}{0}\cdot(x)^4\cdot\left(\frac{1}{x}\right)^0 = x^4
  • (41)(x)3(1x)1=:highlight[4]x2\binom{4}{1}\cdot(x)^3\cdot\left(\frac{1}{x}\right)^1 = :highlight[4]x^2
  • (42)(x)2(1x)2=:highlight[6]\binom{4}{2}\cdot(x)^2\cdot\left(\frac{1}{x}\right)^2 = :highlight[6]
  • (43)(x)1(1x)3=:highlight[4]x2\binom{4}{3}\cdot(x)^1\cdot\left(\frac{1}{x}\right)^3 = \frac{:highlight[4]}{x^2}
  • (44)(x)0(1x)4=1x4\binom{4}{4}\cdot(x)^0\cdot\left(\frac{1}{x}\right)^4 = \frac{1}{x^4}
  1. Combine all terms: (x+1x)4=x4+4x2+6+4x2+1x4\left( x + \frac{1}{x} \right)^4 = x^4 + 4x^2 + 6 + \frac{4}{x^2} + \frac{1}{x^4}

Finding Particular Terms

infoNote

Example: Find the coefficient of x3x^3 in the expansion of (2x)(3+2x)6(2x)(3 + 2x)^6

  1. Use the binomial expansion for (3+2x)6(3 + 2x)^6: (3+2x)6=k=06(6k)36k(2x)k(3 + 2x)^6 = \sum_{k=0}^{6} \binom{6}{k} 3^{6-k} (2x)^k

  2. Identify the term involving x3x^3:

  • For(3+2x)6 (3 + 2x)^6, the x3x^3 term is given by: (63)363(2x)3=(63)27(8x3)=:highlight[20,160]x3\binom{6}{3} 3^{6-3} (2x)^3 = \binom{6}{3} 27 (8x^3) = :highlight[20,160]x^3
  1. Multiply by the 2x2x term:
  • The final term involving x3x^3 in (2x)(3+2x)6(2x)(3 + 2x)^6: 2x20,160x3=:highlight[40,320]x42x \cdot 20,160x^3 = :highlight[40,320]x^4

infoNote

Example: Find the coefficient of x8x^8 in (1+2x2)6(1 + 2x^2)^6

  1. Use the binomial expansion for (1+2x2)6(1 + 2x^2)^6: (1+2x2)6=k=06(6k)16k(2x2)k(1 + 2x^2)^6 = \sum_{k=0}^{6} \binom{6}{k} 1^{6-k} (2x^2)^k

  2. Identify the term involving x8x^8:

  • For (1+2x2)6(1 + 2x^2)^6, the x8x^8 term is given by: (64)164(2x2)4=(64)12(16x8)=:highlight[240]x8\binom{6}{4} 1^{6-4} (2x^2)^4 = \binom{6}{4} 1^2 (16x^8) = :highlight[240]x^8

Summary

  • The coefficient of x3x^3 in (2x)(3+2x)6(2x)(3 + 2x)^6 is 40,320.
  • The coefficient of x8x^8 in (1+2x2)6(1 + 2x^2)^6 is 240.
Books

Only available for registered users.

Sign up now to view the full note, or log in if you already have an account!

500K+ Students Use These Powerful Tools to Master General Binomial Expansion

Enhance your understanding with flashcards, quizzes, and exams—designed to help you grasp key concepts, reinforce learning, and master any topic with confidence!

50 flashcards

Flashcards on General Binomial Expansion

Revise key concepts with interactive flashcards.

Try Maths Pure Flashcards

5 quizzes

Quizzes on General Binomial Expansion

Test your knowledge with fun and engaging quizzes.

Try Maths Pure Quizzes

29 questions

Exam questions on General Binomial Expansion

Boost your confidence with real exam questions.

Try Maths Pure Questions

27 exams created

Exam Builder on General Binomial Expansion

Create custom exams across topics for better practice!

Try Maths Pure exam builder

12 papers

Past Papers on General Binomial Expansion

Practice past papers to reinforce exam experience.

Try Maths Pure Past Papers

Other Revision Notes related to General Binomial Expansion you should explore

Discover More Revision Notes Related to General Binomial Expansion to Deepen Your Understanding and Improve Your Mastery

96%

114 rated

General Binomial Expansion

General Binomial Expansion - Subtleties

user avatar
user avatar
user avatar
user avatar
user avatar

481+ studying

186KViews

96%

114 rated

General Binomial Expansion

General Binomial Expansion - Multiple

user avatar
user avatar
user avatar
user avatar
user avatar

383+ studying

198KViews

96%

114 rated

General Binomial Expansion

Approximating Values

user avatar
user avatar
user avatar
user avatar
user avatar

321+ studying

182KViews
Load more notes

Join 500,000+ A-Level students using SimpleStudy...

Join Thousands of A-Level Students Using SimpleStudy to Learn Smarter, Stay Organized, and Boost Their Grades with Confidence!

97% of Students

Report Improved Results

98% of Students

Recommend to friends

500,000+

Students Supported

50 Million+

Questions answered