Photo AI

A new smartphone was released by a company - Edexcel - A-Level Maths Pure - Question 9 - 2020 - Paper 1

Question icon

Question 9

A-new-smartphone-was-released-by-a-company-Edexcel-A-Level Maths Pure-Question 9-2020-Paper 1.png

A new smartphone was released by a company. The company monitored the total number of phones sold, n, at time t days after the phone was released. The company obse... show full transcript

Worked Solution & Example Answer:A new smartphone was released by a company - Edexcel - A-Level Maths Pure - Question 9 - 2020 - Paper 1

Step 1

the rate of increase of n was proportional to n

96%

114 rated

Answer

Given that the rate of increase of the number of phones sold, n, is proportional to n, we can express this relationship mathematically as:

dndt=kn\frac{dn}{dt} = k n

where k is a positive constant of proportionality. This equation indicates that the change in n over time t is directly proportional to the current quantity of n.

Step 2

Write down a suitable equation for n in terms of t

99%

104 rated

Answer

To derive an equation for n in terms of t, we can solve this differential equation. The general solution to this equation demonstrates that:

n=Aektn = A e^{kt}

where A is a constant representing the initial amount of phones sold at time t = 0, and k is a positive constant.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

Other A-Level Maths Pure topics to explore

1.1 Proof

Maths Pure - AQA

1.2 Proof by Contradiction

Maths Pure - AQA

2.1 Laws of Indices & Surds

Maths Pure - AQA

2.2 Quadratics

Maths Pure - AQA

2.3 Simultaneous Equations

Maths Pure - AQA

2.4 Inequalities

Maths Pure - AQA

2.5 Polynomials

Maths Pure - AQA

2.6 Rational Expressions

Maths Pure - AQA

2.7 Graphs of Functions

Maths Pure - AQA

2.8 Functions

Maths Pure - AQA

2.9 Transformations of Functions

Maths Pure - AQA

2.10 Combinations of Transformations

Maths Pure - AQA

2.11 Partial Fractions

Maths Pure - AQA

2.12 Modelling with Functions

Maths Pure - AQA

2.13 Further Modelling with Functions

Maths Pure - AQA

3.1 Equation of a Straight Line

Maths Pure - AQA

3.2 Circles

Maths Pure - AQA

4.1 Binomial Expansion

Maths Pure - AQA

4.2 General Binomial Expansion

Maths Pure - AQA

4.3 Arithmetic Sequences & Series

Maths Pure - AQA

4.4 Geometric Sequences & Series

Maths Pure - AQA

4.5 Sequences & Series

Maths Pure - AQA

4.6 Modelling with Sequences & Series

Maths Pure - AQA

5.1 Basic Trigonometry

Maths Pure - AQA

5.2 Trigonometric Functions

Maths Pure - AQA

5.3 Trigonometric Equations

Maths Pure - AQA

5.4 Radian Measure

Maths Pure - AQA

5.5 Reciprocal & Inverse Trigonometric Functions

Maths Pure - AQA

5.6 Compound & Double Angle Formulae

Maths Pure - AQA

5.7 Further Trigonometric Equations

Maths Pure - AQA

5.8 Trigonometric Proof

Maths Pure - AQA

5.9 Modelling with Trigonometric Functions

Maths Pure - AQA

6.1 Exponential & Logarithms

Maths Pure - AQA

6.2 Laws of Logarithms

Maths Pure - AQA

6.3 Modelling with Exponentials & Logarithms

Maths Pure - AQA

7.1 Differentiation

Maths Pure - AQA

7.2 Applications of Differentiation

Maths Pure - AQA

7.3 Further Differentiation

Maths Pure - AQA

7.4 Further Applications of Differentiation

Maths Pure - AQA

7.5 Implicit Differentiation

Maths Pure - AQA

8.1 Integration

Maths Pure - AQA

8.2 Further Integration

Maths Pure - AQA

8.3 Differential Equations

Maths Pure - AQA

9.1 Parametric Equations

Maths Pure - AQA

10.1 Solving Equations

Maths Pure - AQA

10.2 Modelling involving Numerical Methods

Maths Pure - AQA

11.1 Vectors in 2 Dimensions

Maths Pure - AQA

11.2 Vectors in 3 Dimensions

Maths Pure - AQA

;