Photo AI

A number of forces act on a particle such that the resultant force is \( \begin{pmatrix} 6 \\ -3 \end{pmatrix} \) N - AQA - A-Level Maths: Mechanics - Question 11 - 2020 - Paper 2

Question icon

Question 11

A-number-of-forces-act-on-a-particle-such-that-the-resultant-force-is-\(-\begin{pmatrix}-6-\\--3-\end{pmatrix}-\)-N-AQA-A-Level Maths: Mechanics-Question 11-2020-Paper 2.png

A number of forces act on a particle such that the resultant force is \( \begin{pmatrix} 6 \\ -3 \end{pmatrix} \) N. One of the forces acting on the particle is \( ... show full transcript

Worked Solution & Example Answer:A number of forces act on a particle such that the resultant force is \( \begin{pmatrix} 6 \\ -3 \end{pmatrix} \) N - AQA - A-Level Maths: Mechanics - Question 11 - 2020 - Paper 2

Step 1

Calculate the total of the other forces acting on the particle.

96%

114 rated

Answer

To find the total of the other forces acting on the particle, we can use the equation for the resultant force:

Resultant force=Force 1+Force 2\text{Resultant force} = \text{Force 1} + \text{Force 2}

Where:

  • Resultant force is ( \begin{pmatrix} 6 \ -3 \end{pmatrix} ) N
  • Force 1 is ( \begin{pmatrix} 8 \ -5 \end{pmatrix} ) N

Let ( \text{Force 2} ) be the total of the other forces.

Therefore: (6−3)=(8−5)+Force 2\begin{pmatrix} 6 \\ -3 \end{pmatrix} = \begin{pmatrix} 8 \\ -5 \end{pmatrix} + \text{Force 2}

To isolate ( \text{Force 2} ), we rearrange the equation: Force 2=(6−3)−(8−5)\text{Force 2} = \begin{pmatrix} 6 \\ -3 \end{pmatrix} - \begin{pmatrix} 8 \\ -5 \end{pmatrix}

Calculating this gives: Force 2=(6−8−3+5)=(−22) N\text{Force 2} = \begin{pmatrix} 6 - 8 \\ -3 + 5 \end{pmatrix} = \begin{pmatrix} -2 \\ 2 \end{pmatrix} \text{ N}

Thus, the answer is ( \begin{pmatrix} -2 \ 2 \end{pmatrix} ) N.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

Other A-Level Maths: Mechanics topics to explore

;