Photo AI

12. (a) Solve, for -180° < x < 180°, the equation 3 sin²x + sin x + 8 = 9 cos²x (b) Hence find the smallest positive solution of the equation 3sin(20° - 30°) + sin(20° - 30°) + 8 = 9 cos(20° - 30°) - Edexcel - A-Level Maths: Pure - Question 13 - 2017 - Paper 2

Question icon

Question 13

12.-(a)-Solve,-for--180°-<-x-<-180°,-the-equation-3-sin²x-+-sin-x-+-8-=-9-cos²x--(b)-Hence-find-the-smallest-positive-solution-of-the-equation-3sin(20°---30°)-+-sin(20°---30°)-+-8-=-9-cos(20°---30°)-Edexcel-A-Level Maths: Pure-Question 13-2017-Paper 2.png

12. (a) Solve, for -180° < x < 180°, the equation 3 sin²x + sin x + 8 = 9 cos²x (b) Hence find the smallest positive solution of the equation 3sin(20° - 30°) + sin(... show full transcript

Worked Solution & Example Answer:12. (a) Solve, for -180° < x < 180°, the equation 3 sin²x + sin x + 8 = 9 cos²x (b) Hence find the smallest positive solution of the equation 3sin(20° - 30°) + sin(20° - 30°) + 8 = 9 cos(20° - 30°) - Edexcel - A-Level Maths: Pure - Question 13 - 2017 - Paper 2

Step 1

Solve, for -180° < x < 180°, the equation

96%

114 rated

Answer

To solve the equation, we can use the identity for cosine:

extcos2x=1extsin2x ext{cos}^2 x = 1 - ext{sin}^2 x

Substituting this into the equation gives:

3extsin2x+extsinx+8=9(1extsin2x)3 ext{sin}^2 x + ext{sin} x + 8 = 9(1 - ext{sin}^2 x)

Now we rearrange the equation:

3extsin2x+extsinx+8=99extsin2x3 ext{sin}^2 x + ext{sin} x + 8 = 9 - 9 ext{sin}^2 x

Combining like terms results in:

12extsin2x+extsinx1=012 ext{sin}^2 x + ext{sin} x - 1 = 0

We now have a quadratic in terms of extsinx ext{sin} x, which we can solve using the quadratic formula:

ext{sin} x = rac{-b oxed{ ext{±}} ext{sqrt}(b^2 - 4ac)}{2a}

Where

  • a=12a = 12, b=1b = 1, and c=1c = -1.

Calculating the discriminant:

b24ac=124(12)(1)=1+48=49b^2 - 4ac = 1^2 - 4(12)(-1) = 1 + 48 = 49

Substituting back, we find:

ext{sin} x = rac{-1 ext{±} 7}{24}

This gives us two values:

  1. ext{sin} x = rac{6}{24} = rac{1}{4}
  2. ext{sin} x = rac{-8}{24} = - rac{1}{3}

Using the inverse sine function to find the angles:

  • For ext{sin} x = rac{1}{4}:

    • x1=14.48°x_1 = 14.48°
    • x2=165.52°x_2 = 165.52°
  • For ext{sin} x = - rac{1}{3}:

    • x3=19.47°x_3 = -19.47°
    • x4=160.53°x_4 = -160.53°

Thus, the solutions are:

  • x=14.48°,165.52°,19.47°,160.53°x = 14.48°, 165.52°, -19.47°, -160.53°

Step 2

Hence find the smallest positive solution of the equation

99%

104 rated

Answer

Starting from the previous calculation, we now need to find the smallest positive solution for the equation:

3extsin(20°30°)+extsin(20°30°)+8=9extcos(20°30°)3 ext{sin}(20° - 30°) + ext{sin}(20° - 30°) + 8 = 9 ext{cos}(20° - 30°)

This simplifies to:

Substituting 20°30°=10°20° - 30° = -10° gives:

3extsin(10°)+extsin(10°)+8=9extcos(10°)3 ext{sin}(-10°) + ext{sin}(-10°) + 8 = 9 ext{cos}(-10°)

We then calculate:

  • extsin(10°)=extsin(10°) ext{sin}(-10°) = - ext{sin}(10°)
  • extcos(10°)=extcos(10°) ext{cos}(-10°) = ext{cos}(10°)

Thus, the equation becomes:

3(extsin(10°))+(extsin(10°))+8=9extcos(10°)3 (- ext{sin}(10°)) + (- ext{sin}(10°)) + 8 = 9 ext{cos}(10°)

Combining terms, 4extsin(10°)+8=9extcos(10°)-4 ext{sin}(10°) + 8 = 9 ext{cos}(10°)

Rearranging gives: 4extsin(10°)=9extcos(10°)8-4 ext{sin}(10°) = 9 ext{cos}(10°) - 8

To find the smallest positive solution, we calculate the angles. From the earlier analysis, we note:

ightarrow 2 ext{sin}(-10°) = - ext{sin}(19.47°) $$ Thus: $$ 2 ext{sin}(-10°) = -19.47° ightarrow heta = 5.26° $$

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

Other A-Level Maths: Pure topics to explore

1.1 Proof

Maths: Pure - AQA

1.2 Proof by Contradiction

Maths: Pure - AQA

2.1 Laws of Indices & Surds

Maths: Pure - AQA

2.2 Quadratics

Maths: Pure - AQA

2.3 Simultaneous Equations

Maths: Pure - AQA

2.4 Inequalities

Maths: Pure - AQA

2.5 Polynomials

Maths: Pure - AQA

2.6 Rational Expressions

Maths: Pure - AQA

2.7 Graphs of Functions

Maths: Pure - AQA

2.8 Functions

Maths: Pure - AQA

2.9 Transformations of Functions

Maths: Pure - AQA

2.10 Combinations of Transformations

Maths: Pure - AQA

2.11 Partial Fractions

Maths: Pure - AQA

2.12 Modelling with Functions

Maths: Pure - AQA

2.13 Further Modelling with Functions

Maths: Pure - AQA

3.1 Equation of a Straight Line

Maths: Pure - AQA

3.2 Circles

Maths: Pure - AQA

4.1 Binomial Expansion

Maths: Pure - AQA

4.2 General Binomial Expansion

Maths: Pure - AQA

4.3 Arithmetic Sequences & Series

Maths: Pure - AQA

4.4 Geometric Sequences & Series

Maths: Pure - AQA

4.5 Sequences & Series

Maths: Pure - AQA

4.6 Modelling with Sequences & Series

Maths: Pure - AQA

5.1 Basic Trigonometry

Maths: Pure - AQA

5.2 Trigonometric Functions

Maths: Pure - AQA

5.3 Trigonometric Equations

Maths: Pure - AQA

5.4 Radian Measure

Maths: Pure - AQA

5.5 Reciprocal & Inverse Trigonometric Functions

Maths: Pure - AQA

5.6 Compound & Double Angle Formulae

Maths: Pure - AQA

5.7 Further Trigonometric Equations

Maths: Pure - AQA

5.8 Trigonometric Proof

Maths: Pure - AQA

5.9 Modelling with Trigonometric Functions

Maths: Pure - AQA

6.1 Exponential & Logarithms

Maths: Pure - AQA

6.2 Laws of Logarithms

Maths: Pure - AQA

6.3 Modelling with Exponentials & Logarithms

Maths: Pure - AQA

7.1 Differentiation

Maths: Pure - AQA

7.2 Applications of Differentiation

Maths: Pure - AQA

7.3 Further Differentiation

Maths: Pure - AQA

7.4 Further Applications of Differentiation

Maths: Pure - AQA

7.5 Implicit Differentiation

Maths: Pure - AQA

8.1 Integration

Maths: Pure - AQA

8.2 Further Integration

Maths: Pure - AQA

8.3 Differential Equations

Maths: Pure - AQA

9.1 Parametric Equations

Maths: Pure - AQA

10.1 Solving Equations

Maths: Pure - AQA

10.2 Modelling involving Numerical Methods

Maths: Pure - AQA

11.1 Vectors in 2 Dimensions

Maths: Pure - AQA

11.2 Vectors in 3 Dimensions

Maths: Pure - AQA

;