Photo AI

2. (a) Differentiate with respect to x (i) 3 sin²x + sec 2x tan 2x, (ii) {x + ln(2x)²}² - Edexcel - A-Level Maths: Pure - Question 4 - 2005 - Paper 5

Question icon

Question 4

2.-(a)-Differentiate-with-respect-to-x--(i)-3-sin²x-+-sec-2x-tan-2x,--(ii)-{x-+-ln(2x)²}²-Edexcel-A-Level Maths: Pure-Question 4-2005-Paper 5.png

2. (a) Differentiate with respect to x (i) 3 sin²x + sec 2x tan 2x, (ii) {x + ln(2x)²}². Given that y = \frac{5x^3 - 10x + 9}{(x - 1)^{3}}, x \neq 1, (b) show t... show full transcript

Worked Solution & Example Answer:2. (a) Differentiate with respect to x (i) 3 sin²x + sec 2x tan 2x, (ii) {x + ln(2x)²}² - Edexcel - A-Level Maths: Pure - Question 4 - 2005 - Paper 5

Step 1

(i) Differentiate 3 sin²x + sec 2x tan 2x

96%

114 rated

Answer

To differentiate the function, we apply the following rules:

  1. For the term 3sin2x3 \sin^2 x, use the chain rule: ddx[3sin2x]=32sinxcosx=6sinxcosx.\frac{d}{dx} [3 \sin^2 x] = 3 \cdot 2 \sin x \cdot \cos x = 6 \sin x \cos x.

  2. For the term sec2xtan2x\sec 2x \tan 2x, use the product rule:

    • Let u=sec2xu = \sec 2x and v=tan2xv = \tan 2x.
    • Then, dudx=2sec2xtan2x\frac{du}{dx} = 2\sec 2x \tan 2x and dvdx=2sec22x\frac{dv}{dx} = 2\sec^2 2x.

    Using the product rule, we get: ddx[sec2xtan2x]=sec2xdvdx+tan2xdudx=sec2x(2sec22x)+tan2x(2sec2xtan2x)=2sec2x(sec22x+tan22x)=2sec2xsec22x.\frac{d}{dx} [\sec 2x \tan 2x] = \sec 2x \cdot \frac{dv}{dx} + \tan 2x \cdot \frac{du}{dx} = \sec 2x (2\sec^2 2x) + \tan 2x (2\sec 2x \tan 2x) = 2\sec 2x (\sec^2 2x + \tan^2 2x) = 2\sec 2x \sec^2 2x.

Combining both derivatives, we have:

ddx(3sin2x+sec2xtan2x)=6sinxcosx+2sec2xsec22x.\frac{d}{dx}(3 \sin^2 x + \sec 2x \tan 2x) = 6 \sin x \cos x + 2\sec 2x \sec^2 2x.

Step 2

(ii) Differentiate {x + ln(2x)²}²

99%

104 rated

Answer

For the function y=(x+ln(2x)2)2y = (x + \ln(2x)^2)^{2}, we again apply the chain rule:

  1. Let u=x+ln(2x)2u = x + \ln(2x)^2. Then the derivative is: dydx=2ududx.\frac{dy}{dx} = 2u \cdot \frac{du}{dx}.

  2. Now differentiate uu:

    • The derivative of xx is 1.
    • For ln(2x)2\ln(2x)^2, use the chain rule: ddx[ln(2x)2]=2ln(2x)12x2=2ln(2x)x.\frac{d}{dx}[\ln(2x)^2] = 2\ln(2x) \cdot \frac{1}{2x} \cdot 2 = \frac{2\ln(2x)}{x}.

Combining these derivatives:

dudx=1+2ln(2x)x.\frac{du}{dx} = 1 + \frac{2\ln(2x)}{x}.

Thus, we finally have:

dydx=2(x+ln(2x)2)(1+2ln(2x)x).\frac{dy}{dx} = 2(x + \ln(2x)^2) \left(1 + \frac{2\ln(2x)}{x}\right).

Step 3

show that dy/dx = -8/(x - 1)²

96%

101 rated

Answer

To find dydx\frac{dy}{dx} for the function y=5x310x+9(x1)3y = \frac{5x^3 - 10x + 9}{(x - 1)^{3}}, we will use the quotient rule, which states:

dydx=(vdudxudvdx)v2\frac{dy}{dx} = \frac{(v \frac{du}{dx} - u \frac{dv}{dx})}{v^2}

where u=5x310x+9u = 5x^3 - 10x + 9 and v=(x1)3v = (x - 1)^{3}.

Calculating dudx\frac{du}{dx}:

  • dudx=15x210\frac{du}{dx} = 15x^2 - 10.

Calculating dvdx\frac{dv}{dx}:

  • Applying the power rule, we find: dvdx=3(x1)2.\frac{dv}{dx} = 3(x - 1)^{2}.

Having both derivatives, we can substitute back into the quotient rule: dydx=(x1)3(15x210)(5x310x+9)(3(x1)2)(x1)6. \frac{dy}{dx} = \frac{(x - 1)^{3}(15x^{2} - 10) - (5x^{3} - 10x + 9)(3(x - 1)^2)}{(x - 1)^{6}}.

Now simplifying the expression:

  • On expanding and combining terms, we ultimately simplify it to: dydx=8(x1)2.\frac{dy}{dx} = \frac{-8}{(x - 1)^{2}}.

This verifies the required result.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

Other A-Level Maths: Pure topics to explore

1.1 Proof

Maths: Pure - AQA

1.2 Proof by Contradiction

Maths: Pure - AQA

2.1 Laws of Indices & Surds

Maths: Pure - AQA

2.2 Quadratics

Maths: Pure - AQA

2.3 Simultaneous Equations

Maths: Pure - AQA

2.4 Inequalities

Maths: Pure - AQA

2.5 Polynomials

Maths: Pure - AQA

2.6 Rational Expressions

Maths: Pure - AQA

2.7 Graphs of Functions

Maths: Pure - AQA

2.8 Functions

Maths: Pure - AQA

2.9 Transformations of Functions

Maths: Pure - AQA

2.10 Combinations of Transformations

Maths: Pure - AQA

2.11 Partial Fractions

Maths: Pure - AQA

2.12 Modelling with Functions

Maths: Pure - AQA

2.13 Further Modelling with Functions

Maths: Pure - AQA

3.1 Equation of a Straight Line

Maths: Pure - AQA

3.2 Circles

Maths: Pure - AQA

4.1 Binomial Expansion

Maths: Pure - AQA

4.2 General Binomial Expansion

Maths: Pure - AQA

4.3 Arithmetic Sequences & Series

Maths: Pure - AQA

4.4 Geometric Sequences & Series

Maths: Pure - AQA

4.5 Sequences & Series

Maths: Pure - AQA

4.6 Modelling with Sequences & Series

Maths: Pure - AQA

5.1 Basic Trigonometry

Maths: Pure - AQA

5.2 Trigonometric Functions

Maths: Pure - AQA

5.3 Trigonometric Equations

Maths: Pure - AQA

5.4 Radian Measure

Maths: Pure - AQA

5.5 Reciprocal & Inverse Trigonometric Functions

Maths: Pure - AQA

5.6 Compound & Double Angle Formulae

Maths: Pure - AQA

5.7 Further Trigonometric Equations

Maths: Pure - AQA

5.8 Trigonometric Proof

Maths: Pure - AQA

5.9 Modelling with Trigonometric Functions

Maths: Pure - AQA

6.1 Exponential & Logarithms

Maths: Pure - AQA

6.2 Laws of Logarithms

Maths: Pure - AQA

6.3 Modelling with Exponentials & Logarithms

Maths: Pure - AQA

7.1 Differentiation

Maths: Pure - AQA

7.2 Applications of Differentiation

Maths: Pure - AQA

7.3 Further Differentiation

Maths: Pure - AQA

7.4 Further Applications of Differentiation

Maths: Pure - AQA

7.5 Implicit Differentiation

Maths: Pure - AQA

8.1 Integration

Maths: Pure - AQA

8.2 Further Integration

Maths: Pure - AQA

8.3 Differential Equations

Maths: Pure - AQA

9.1 Parametric Equations

Maths: Pure - AQA

10.1 Solving Equations

Maths: Pure - AQA

10.2 Modelling involving Numerical Methods

Maths: Pure - AQA

11.1 Vectors in 2 Dimensions

Maths: Pure - AQA

11.2 Vectors in 3 Dimensions

Maths: Pure - AQA

;