Photo AI
Question 6
6 (a) Describe, in terms of vibrations, the difference between a longitudinal and a transverse wave. Give one example of each wave. A longitudinal wave is character... show full transcript
Step 1
Answer
In a longitudinal wave, the particles of the medium vibrate in the same direction as the wave travels. This creates areas of compression and rarefaction, such as in sound waves. In a transverse wave, the particles vibrate perpendicular to the direction of wave travel, resulting in crests and troughs, like with surface waves on water.
Step 2
Answer
When the sound frequency is increased from zero, certain frequencies cause the air column in the closed tube to resonate. A stationary wave forms when the incident wave from the loudspeaker reflects off the closed end of the tube. The reflected wave interferes with the incoming wave, creating nodes (points of no displacement) and antinodes (points of maximum amplitude) within the tube. The constructive and destructive interference of the waves leads to the formation of a stationary wave, thus amplifying the sound heard by the listener.
Report Improved Results
Recommend to friends
Students Supported
Questions answered
8. Nuclear Physics
Physics A - OCR
1. Measurements and their errors
Physics A - OCR
2. Particles and Radiation
Physics A - OCR
3. Waves
Physics A - OCR
4. Mechanics & Materials
Physics A - OCR
5. Electricity
Physics A - OCR
6. Further Mechanics & Thermal Physics
Physics A - OCR
7. Fields & Their Consequences
Physics A - OCR
9. Astrophysics
Physics A - OCR
10. Medical Physics
Physics A - OCR
Required Practicals
Physics A - OCR
13.1 Discrete semiconductor devices
Physics A - OCR
11.2 Thermodynamics and engines
Physics A - OCR
9.1 Telescopes
Physics A - OCR
2.1 Particles
Physics A - OCR
3.1 Progressive and stationary waves
Physics A - OCR
4.1 Force, energy and momentum
Physics A - OCR
12.1 The discovery of the electron
Physics A - OCR
5.1 Current electricity
Physics A - OCR
6.1 Periodic motion
Physics A - OCR
11.1 Rotational dynamics
Physics A - OCR
7.1 Fields
Physics A - OCR
8.1 Radioactivity
Physics A - OCR
9.2 Classification of stars
Physics A - OCR
4.2 Materials
Physics A - OCR
2.2 Electromagnetic radiation and quantum phenomena
Physics A - OCR
13.3 Analogue signal processing
Physics A - OCR
7.2 Gravitational fields
Physics A - OCR
3.2 Refraction, diffraction and interference
Physics A - OCR
12.2 Wave-particle duality
Physics A - OCR
12.3 Special relativity
Physics A - OCR
10.3 Biological Measurement
Physics A - OCR
9.3 Cosmology
Physics A - OCR
7.3 Electric fields
Physics A - OCR
7.4 Capacitance
Physics A - OCR
10.4 Non-ionising Imaging
Physics A - OCR
7.5 Magnetic fields
Physics A - OCR
13.6 Data communication systems
Physics A - OCR
10.5 X-ray Imaging
Physics A - OCR
10.6 Radionuclide Imaging and Therapy
Physics A - OCR