Photo AI
Question 6
6 (a) Explain, in terms of their structure, how metals conduct electricity. (b) Oxygen is a simple molecular, covalent substance. The electronic configuration of an... show full transcript
Step 1
Answer
Metals conduct electricity due to the presence of delocalized electrons. These electrons are not fixed to any particular atom and can move freely throughout the metallic lattice. This movement of electrons allows electrical current to flow through the metal.
Step 2
Answer
The dot and cross diagram for an oxygen molecule, O2, would show two oxygen atoms bonded together, where each atom has six outer electrons. In the diagram, the electrons from one oxygen atom can be represented by dots (•) and the electrons from the other by crosses (x). Each oxygen shares two electrons in a double bond, resulting in a complete outer shell for both atoms.
Step 3
Answer
Potassium chloride has a high melting point due to the strong electrostatic forces of attraction between the positively charged potassium ions and the negatively charged chloride ions. These strong ionic bonds require a large amount of heat energy to break, resulting in a high melting point.
Step 4
Answer
Diamond has a strong tetrahedral structure where each carbon atom is covalently bonded to four other carbon atoms, making it extremely hard and suitable for cutting tools. In contrast, graphite has a layered structure where each carbon atom is bonded to three others in flat sheets. These sheets can slide over one another, making graphite an excellent lubricant. Additionally, the delocalized electrons in graphite allow it to conduct electricity, making it suitable for use in electrodes.
Report Improved Results
Recommend to friends
Students Supported
Questions answered
The Periodic Table
Chemistry - AQA
Properties of Transition Metals
Chemistry - AQA
Ionic, Covalent & Metallic Bond
Chemistry - AQA
Bonding & Substance Properties
Chemistry - AQA
Structure & Bonding of Carbon
Chemistry - AQA
Bulk & Surface Properties
Chemistry - AQA
Measurement, Mass & Equations
Chemistry - AQA
Calculating Mass of Substances
Chemistry - AQA
Yield & Atom Economy
Chemistry - AQA
Concentration of Solutions
Chemistry - AQA
Amount of Substance & Gas Volume
Chemistry - AQA
Reactivity of Metals
Chemistry - AQA
Reactions of Acids
Chemistry - AQA
Electrolysis
Chemistry - AQA
Exothermic & Endothermic Reactions
Chemistry - AQA
Chemical Cells & Fuel Cells
Chemistry - AQA
Rate of Reaction
Chemistry - AQA
Reversibility & Equilibrium
Chemistry - AQA
Hydrocarbons: Fuel & Feedstock
Chemistry - AQA
Reactions of Alkenes & Alcohols
Chemistry - AQA
Synthetic & Natural Polymers
Chemistry - AQA
Purity, Formulations & Chromatography
Chemistry - AQA
Identification of Common Gases
Chemistry - AQA
Methods of Identifying Ions
Chemistry - AQA
Causes of Atmospheric Pollution
Chemistry - AQA
Global Reserves & Potable Water
Chemistry - AQA
Life Cycle Analysis & Recycling
Chemistry - AQA
Haber Process & NPK Fertilisers
Chemistry - AQA
The Atom
Chemistry - AQA
Earths Atmosphere and Greenhouse Gases
Chemistry - AQA
Nervous Coordination
Chemistry - AQA
Proteins: Enzymes
Chemistry - AQA
Cell Recognition & the Immune System
Chemistry - AQA
Mass Transport in Animals
Chemistry - AQA
Photosynthesis
Chemistry - AQA
Mass Transport in Plants
Chemistry - AQA
Homeostasis
Chemistry - AQA
Inheritance
Chemistry - AQA
Regulation of Gene Expression
Chemistry - AQA
Evolution
Chemistry - AQA
Genetic Diversity & Adaptation
Chemistry - AQA
Biological Molecules: Carbohydrates
Chemistry - AQA
Energy & Ecosystems
Chemistry - AQA
Nutrient Cycles
Chemistry - AQA
Biodiversity
Chemistry - AQA
Species & Taxonomy
Chemistry - AQA
Populations in Ecosystems
Chemistry - AQA
Nucleic Acids: Structure & DNA Replication
Chemistry - AQA
Cell Membranes & Transport
Chemistry - AQA
DNA, Genes & Chromosomes
Chemistry - AQA
Cell Structure
Chemistry - AQA
Biological Molecules: Proteins
Chemistry - AQA
DNA & Protein Synthesis
Chemistry - AQA
Cell Division in Eukaryotic & Prokaryotic Cells
Chemistry - AQA
Populations
Chemistry - AQA
Vaccines, Disease & Monoclonal Antibodies
Chemistry - AQA
Human Gas Exchange
Chemistry - AQA
Genetic Mutations
Chemistry - AQA
Respiration
Chemistry - AQA
Gene Technologies
Chemistry - AQA
Genetic Diversity: Mutations & Meiosis
Chemistry - AQA
ATP, Water & Inorganic Ions
Chemistry - AQA
The Circulatory System in Animals
Chemistry - AQA
The Microscope in Cell Studies
Chemistry - AQA
Response to Stimuli
Chemistry - AQA
Skeletal Muscles
Chemistry - AQA
Adaptations for Gas Exchange
Chemistry - AQA