Photo AI
Question 2
Bacteriophages are viruses that kill bacteria. Figure 2 shows drawings of a bacteriophage and a bacterium. Both have ribosomes. Both have a cell-surface membrane.... show full transcript
Step 1
Answer
The correct statement is: The bacteriophage has a capsid and the bacterium has a cell-surface membrane. This highlights the structural differences between the two organisms.
Step 2
Answer
To find how many times longer the bacterium is than the bacteriophage, we need to use the given scale:
Now we calculate:
Thus, the bacterium is 10 times longer than the bacteriophage.
Step 3
Answer
The scientists’ null hypothesis could be: 'There is no difference in the number of live pathogenic bacteria in the mice treated with bacteriophages compared to those not treated with bacteriophages.' This hypothesis establishes a baseline for statistical testing.
Step 4
Answer
In Figure 3, it shows the mean number of live bacteria for both groups, A and B. The results indicate a significantly higher mean number of bacteria in group A (not treated) than in group B (treated). Dilutions were necessary for group A samples where the number of bacteria was high to ensure accurate counting. In contrast, for group B, the lower bacterial load permitted accurate counting without dilution, facilitating analysis.
Step 5
Answer
Figure 3 indicates that the mean number of live bacteria is significantly lower in mice treated with bacteriophage compared to those not treated. This suggests that bacteriophages are effective in reducing the number of pathogenic bacteria in infected mice and underscores their potential therapeutic applications.
Report Improved Results
Recommend to friends
Students Supported
Questions answered
Biological Molecules: Carbohydrates
Biology - AQA
Biological Molecules: Proteins
Biology - AQA
Proteins: Enzymes
Biology - AQA
Nucleic Acids: Structure & DNA Replication
Biology - AQA
ATP, Water & Inorganic Ions
Biology - AQA
Cell Structure
Biology - AQA
The Microscope in Cell Studies
Biology - AQA
Cell Division in Eukaryotic & Prokaryotic Cells
Biology - AQA
Cell Membranes & Transport
Biology - AQA
Cell Recognition & the Immune System
Biology - AQA
Vaccines, Disease & Monoclonal Antibodies
Biology - AQA
Adaptations for Gas Exchange
Biology - AQA
Human Gas Exchange
Biology - AQA
Mass Transport in Animals
Biology - AQA
The Circulatory System in Animals
Biology - AQA
Mass Transport in Plants
Biology - AQA
DNA, Genes & Chromosomes
Biology - AQA
DNA & Protein Synthesis
Biology - AQA
Genetic Diversity: Mutations & Meiosis
Biology - AQA
Genetic Diversity & Adaptation
Biology - AQA
Species & Taxonomy
Biology - AQA
Biodiversity
Biology - AQA
Photosynthesis
Biology - AQA
Respiration
Biology - AQA
Energy & Ecosystems
Biology - AQA
Nutrient Cycles
Biology - AQA
Response to Stimuli
Biology - AQA
Nervous Coordination
Biology - AQA
Skeletal Muscles
Biology - AQA
Homeostasis
Biology - AQA
Inheritance
Biology - AQA
Populations
Biology - AQA
Evolution
Biology - AQA
Populations in Ecosystems
Biology - AQA
Genetic Mutations
Biology - AQA
Regulation of Gene Expression
Biology - AQA
Gene Technologies
Biology - AQA
1.1 Carbohydrates
Biology - AQA
1.2 Lipids
Biology - AQA
1.3 Proteins
Biology - AQA
1.4 Proteins: Enzymes
Biology - AQA
1.5 Nucleic Acids: Structure & DNA Replication
Biology - AQA
1.6 ATP, Water & Inorganic Ions
Biology - AQA
2.1 Cell Structure
Biology - AQA
2.3 Cell Division in Eukaryotic & Prokaryotic Cells
Biology - AQA
2.4 Cell Membranes & Transport
Biology - AQA
2.5 Cell Recognition & the Immune System
Biology - AQA
2.6 Vaccines, Disease & Monoclonal Antibodies
Biology - AQA
3.1 Adaptations for Gas Exchange
Biology - AQA
3.2 Human Gas Exchange
Biology - AQA
3.3 Digestion & Absorption
Biology - AQA
3.4 Mass Transport in Animals
Biology - AQA
3.5 The Circulatory System in Animals
Biology - AQA
3.6 Mass Transport in Plants
Biology - AQA
4.1 DNA, Genes & Chromosomes
Biology - AQA
4.2 DNA & Protein Synthesis
Biology - AQA
4.3 Genetic Diversity: Mutations & Meiosis
Biology - AQA
4.4 Genetic Diversity & Adaptation
Biology - AQA
4.5 Species & Taxonomy
Biology - AQA
4.6 Biodiversity
Biology - AQA
5.1 Photosynthesis (A Level only)
Biology - AQA
5.2 Respiration (A Level only)
Biology - AQA
5.3 Energy & Ecosystems (A Level only)
Biology - AQA
5.4 Nutrient Cycles (A Level only)
Biology - AQA
6.1 Response to Stimuli (A Level only)
Biology - AQA
6.2 Nervous Coordination (A Level only)
Biology - AQA
6.3 Skeletal Muscles (A Level only)
Biology - AQA
6.4 Homeostasis (A Level only)
Biology - AQA
7.1 Inheritance (A Level only)
Biology - AQA
7.2 Populations (A Level only)
Biology - AQA
7.3 Evolution (A Level only)
Biology - AQA
7.4 Populations in Ecosystems (A Level only)
Biology - AQA
8.1 Genetic Mutations (A Level only)
Biology - AQA
8.2 Regulation of Gene Expression (A Level only)
Biology - AQA
8.3 Using Genome Projects (A Level only)
Biology - AQA
8.4 Gene Technologies (A Level only)
Biology - AQA
Risk Assessment Masterlist
Biology - AQA
Investigating Cell Membrane Permeability
Biology - AQA
Dissection
Biology - AQA
Aseptic Techniques
Biology - AQA
Chromatography of Photosynthetic Pigments
Biology - AQA
Dehydrogenase Activity in Chloroplasts
Biology - AQA
Respiration in Single-Celled Organisms
Biology - AQA
Measuring Concentration of Glucose using a Calibration Curve
Biology - AQA
Effect of Different Variables on Species Distribution
Biology - AQA