Photo AI

A quadrilateral has vertices A, B, C and D with position vectors given by: $$\vec{OA} = \begin{pmatrix} 3 \\ 5 \\ 1 \end{pmatrix}, \quad \vec{OB} = \begin{pmatrix} -1 \\ 2 \\ 7 \end{pmatrix}, \quad \vec{OC} = \begin{pmatrix} 0 \\ 7 \\ 6 \end{pmatrix} \text{ and } \quad \vec{OD} = \begin{pmatrix} 4 \\ 10 \\ 0 \end{pmatrix}$ 14 (a) Write down the vector $\vec{AB}$ - AQA - A-Level Maths Mechanics - Question 14 - 2018 - Paper 2

Question icon

Question 14

A-quadrilateral-has-vertices-A,-B,-C-and-D-with-position-vectors-given-by:--$$\vec{OA}-=-\begin{pmatrix}-3-\\-5-\\-1-\end{pmatrix},-\quad-\vec{OB}-=-\begin{pmatrix}--1-\\-2-\\-7-\end{pmatrix},-\quad-\vec{OC}-=-\begin{pmatrix}-0-\\-7-\\-6-\end{pmatrix}-\text{-and-}-\quad-\vec{OD}-=-\begin{pmatrix}-4-\\-10-\\-0-\end{pmatrix}$--14-(a)-Write-down-the-vector-$\vec{AB}$-AQA-A-Level Maths Mechanics-Question 14-2018-Paper 2.png

A quadrilateral has vertices A, B, C and D with position vectors given by: $$\vec{OA} = \begin{pmatrix} 3 \\ 5 \\ 1 \end{pmatrix}, \quad \vec{OB} = \begin{pmatrix} ... show full transcript

Worked Solution & Example Answer:A quadrilateral has vertices A, B, C and D with position vectors given by: $$\vec{OA} = \begin{pmatrix} 3 \\ 5 \\ 1 \end{pmatrix}, \quad \vec{OB} = \begin{pmatrix} -1 \\ 2 \\ 7 \end{pmatrix}, \quad \vec{OC} = \begin{pmatrix} 0 \\ 7 \\ 6 \end{pmatrix} \text{ and } \quad \vec{OD} = \begin{pmatrix} 4 \\ 10 \\ 0 \end{pmatrix}$ 14 (a) Write down the vector $\vec{AB}$ - AQA - A-Level Maths Mechanics - Question 14 - 2018 - Paper 2

Step 1

Write down the vector $\vec{AB}$

96%

114 rated

Answer

To find the vector from A to B, we use the formula:

AB=BA\vec{AB} = \vec{B} - \vec{A}

Calculating this gives:

AB=(127)(351)=(132571)=(436)\vec{AB} = \begin{pmatrix} -1 \\ 2 \\ 7 \end{pmatrix} - \begin{pmatrix} 3 \\ 5 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 - 3 \\ 2 - 5 \\ 7 - 1 \end{pmatrix} = \begin{pmatrix} -4 \\ -3 \\ 6 \end{pmatrix}

Thus, the vector AB\vec{AB} is:

$$\vec{AB} = \begin{pmatrix} -4 \ -3 \ 6 \end{pmatrix}$

Step 2

Show that ABCD is a parallelogram, but not a rhombus

99%

104 rated

Answer

First, we need to find the vectors for the other sides:

  1. Calculate BC\vec{BC}:

BC=CB=(076)(127)=(151)\vec{BC} = \vec{C} - \vec{B} = \begin{pmatrix} 0 \\ 7 \\ 6 \end{pmatrix} - \begin{pmatrix} -1 \\ 2 \\ 7 \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \\ -1 \end{pmatrix}

  1. Calculate AD\vec{AD}:

AD=DA=(4100)(351)=(151)\vec{AD} = \vec{D} - \vec{A} = \begin{pmatrix} 4 \\ 10 \\ 0 \end{pmatrix} - \begin{pmatrix} 3 \\ 5 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \\ -1 \end{pmatrix}

We observe that:

BC=AD\vec{BC} = \vec{AD}

This means that the opposite sides are equal; hence, ABCD is a parallelogram.

Now to check if it is a rhombus, we need to compare the lengths AB|\vec{AB}| and BC|\vec{BC}|.

Calculate the length of AB\vec{AB}:

AB=(4)2+(3)2+62=16+9+36=61|\vec{AB}| = \sqrt{(-4)^2 + (-3)^2 + 6^2} = \sqrt{16 + 9 + 36} = \sqrt{61}

Now calculate the length of BC\vec{BC}:

BC=(1)2+(5)2+(1)2=1+25+1=27|\vec{BC}| = \sqrt{(1)^2 + (5)^2 + (-1)^2} = \sqrt{1 + 25 + 1} = \sqrt{27}

Since ABBC|\vec{AB}| \neq |\vec{BC}|, ABCD is not a rhombus.

Thus, we have shown that ABCD is a parallelogram but not a rhombus.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;