Photo AI
Question 7
A planet takes $T$ days to complete one orbit of the Sun. $T$ is known to be related to the planet's average distance $d$, in millions of kilometres, from the Sun. A... show full transcript
Step 1
Answer
To find the equation of the straight line, we will use the coordinates of the two known points from the graph:
Calculate the slope (b) using the formula: b = rac{y_2 - y_1}{x_2 - x_1} = rac{4.49 - 1.94}{3.46 - 1.76} = rac{2.55}{1.70} = 1.5
Use point-slope form to find a: Select one point, let's use the coordinates for Mercury (1.76, 1.94). The equation becomes:
Now, rearranging to find gives:
Step 2
Answer
Using the equation we just derived:
We can convert this equation from logarithmic form to exponential form. Using the property of logarithms:
Thus, we can express in terms of :
Step 3
Answer
Given that Neptune takes approximately 60,000 days to complete one orbit of the Sun, we can substitute and into the equation:
First, calculate : Using
Substituting values into the equation:
Rearranging to solve for d:
Report Improved Results
Recommend to friends
Students Supported
Questions answered
1.1 Proof
Maths: Pure - AQA
1.2 Proof by Contradiction
Maths: Pure - AQA
2.1 Laws of Indices & Surds
Maths: Pure - AQA
2.2 Quadratics
Maths: Pure - AQA
2.3 Simultaneous Equations
Maths: Pure - AQA
2.4 Inequalities
Maths: Pure - AQA
2.5 Polynomials
Maths: Pure - AQA
2.6 Rational Expressions
Maths: Pure - AQA
2.7 Graphs of Functions
Maths: Pure - AQA
2.8 Functions
Maths: Pure - AQA
2.9 Transformations of Functions
Maths: Pure - AQA
2.10 Combinations of Transformations
Maths: Pure - AQA
2.11 Partial Fractions
Maths: Pure - AQA
2.12 Modelling with Functions
Maths: Pure - AQA
2.13 Further Modelling with Functions
Maths: Pure - AQA
3.1 Equation of a Straight Line
Maths: Pure - AQA
3.2 Circles
Maths: Pure - AQA
4.1 Binomial Expansion
Maths: Pure - AQA
4.2 General Binomial Expansion
Maths: Pure - AQA
4.3 Arithmetic Sequences & Series
Maths: Pure - AQA
4.4 Geometric Sequences & Series
Maths: Pure - AQA
4.5 Sequences & Series
Maths: Pure - AQA
4.6 Modelling with Sequences & Series
Maths: Pure - AQA
5.1 Basic Trigonometry
Maths: Pure - AQA
5.2 Trigonometric Functions
Maths: Pure - AQA
5.3 Trigonometric Equations
Maths: Pure - AQA
5.4 Radian Measure
Maths: Pure - AQA
5.5 Reciprocal & Inverse Trigonometric Functions
Maths: Pure - AQA
5.6 Compound & Double Angle Formulae
Maths: Pure - AQA
5.7 Further Trigonometric Equations
Maths: Pure - AQA
5.8 Trigonometric Proof
Maths: Pure - AQA
5.9 Modelling with Trigonometric Functions
Maths: Pure - AQA
6.1 Exponential & Logarithms
Maths: Pure - AQA
6.2 Laws of Logarithms
Maths: Pure - AQA
6.3 Modelling with Exponentials & Logarithms
Maths: Pure - AQA
7.1 Differentiation
Maths: Pure - AQA
7.2 Applications of Differentiation
Maths: Pure - AQA
7.3 Further Differentiation
Maths: Pure - AQA
7.4 Further Applications of Differentiation
Maths: Pure - AQA
7.5 Implicit Differentiation
Maths: Pure - AQA
8.1 Integration
Maths: Pure - AQA
8.2 Further Integration
Maths: Pure - AQA
8.3 Differential Equations
Maths: Pure - AQA
9.1 Parametric Equations
Maths: Pure - AQA
10.1 Solving Equations
Maths: Pure - AQA
10.2 Modelling involving Numerical Methods
Maths: Pure - AQA
11.1 Vectors in 2 Dimensions
Maths: Pure - AQA
11.2 Vectors in 3 Dimensions
Maths: Pure - AQA