Photo AI

Either Use de Moivre’s theorem to prove that $$tan \ 3\theta = \frac{3\ tan\theta - tan^3\theta }{1 - 3\ tan^2\theta}$$ State the exact values of $\theta$, between 0 and $\pi$, that satisfy $tan \ 3\theta = 1$ - CIE - A-Level Further Maths - Question 11 - 2011 - Paper 1

Question icon

Question 11

Either--Use-de-Moivre’s-theorem-to-prove-that--$$tan-\-3\theta-=-\frac{3\-tan\theta---tan^3\theta-}{1---3\-tan^2\theta}$$--State-the-exact-values-of-$\theta$,-between-0-and-$\pi$,-that-satisfy-$tan-\-3\theta-=-1$-CIE-A-Level Further Maths-Question 11-2011-Paper 1.png

Either Use de Moivre’s theorem to prove that $$tan \ 3\theta = \frac{3\ tan\theta - tan^3\theta }{1 - 3\ tan^2\theta}$$ State the exact values of $\theta$, betwee... show full transcript

Worked Solution & Example Answer:Either Use de Moivre’s theorem to prove that $$tan \ 3\theta = \frac{3\ tan\theta - tan^3\theta }{1 - 3\ tan^2\theta}$$ State the exact values of $\theta$, between 0 and $\pi$, that satisfy $tan \ 3\theta = 1$ - CIE - A-Level Further Maths - Question 11 - 2011 - Paper 1

Step 1

Use de Moivre’s theorem to prove that tan 3θ = \frac{3 tan θ - tan³ θ}{1 - 3 tan² θ}

96%

114 rated

Answer

To use de Moivre's theorem, we start with:

(cosθ+isinθ)3=cos(3θ)+isin(3θ)(cos \theta + i sin \theta)^3 = cos(3\theta) + i sin(3\theta)

Expanding this using the binomial theorem:

cos3θ+3cos2θisinθ3cosθsin2θ+isin3θcos^3\theta + 3cos^2\theta i sin\theta - 3cos\theta sin^2\theta + i sin^3\theta

Grouping real and imaginary parts, we equate:

Real part: cos(3θ)=cos3θ3cosθsin2θcos(3\theta) = cos^3 \theta - 3cos\theta sin^2 \theta

Imaginary part: sin(3θ)=3cos2θsinθsin3θsin(3\theta) = 3cos^2 \theta sin \theta - sin^3 \theta

Using tanθ=sinθcosθtan \theta = \frac{sin \theta}{cos \theta}:

tan(3θ)=sin(3θ)cos(3θ)=3tanθtan3θ13tan2θtan(3\theta) = \frac{sin(3\theta)}{cos(3\theta)} = \frac{3tan \theta - tan^3 \theta}{1 - 3tan^2 \theta}

Step 2

State the exact values of θ, between 0 and π, that satisfy tan 3θ = 1.

99%

104 rated

Answer

To find the values of θ\theta, we set:

3θ=π4+nπ, nZ3\theta = \frac{\pi}{4} + n\pi, \ n \in \mathbb{Z}

Thus,

θ=π12+nπ3\theta = \frac{\pi}{12} + \frac{n\pi}{3}

Considering values between 0 and π\pi:

  • For n=0n=0: θ=π12\theta = \frac{\pi}{12}
  • For n=1n=1: θ=5π12\theta = \frac{5\pi}{12}
  • For n=2n=2: θ=π12+2π3=9π12=3π4\theta = \frac{\pi}{12} + \frac{2\pi}{3} = \frac{9\pi}{12} = \frac{3\pi}{4}

Final exact values: θ=π12,5π12,3π4\theta = \frac{\pi}{12}, \frac{5\pi}{12}, \frac{3\pi}{4}.

Step 3

Express each root of the equation θ³ - 3θ² - 3θ + 1 = 0 in the form tan(kπ), where k is a positive rational number.

96%

101 rated

Answer

To solve the cubic equation:

θ33θ23θ+1=0\theta^3 - 3\theta^2 - 3\theta + 1 = 0

We can factor or use the Rational Root Theorem. Finding roots, we can express them:

  1. The root θ=π12\theta = \frac{\pi}{12} gives tan(kπ)=tan(π12)tan(k\pi) = \tan(\frac{\pi}{12});
  2. The root θ=5π12\theta = \frac{5\pi}{12} gives tan(kπ)=tan(5π12)tan(k\pi) = \tan(\frac{5\pi}{12});
  3. The root θ=3π4\theta = \frac{3\pi}{4} gives tan(kπ)=tan(3π4)tan(k\pi) = \tan(\frac{3\pi}{4});

Hence, we can deduce: k=112,512,34k = \frac{1}{12}, \frac{5}{12}, \frac{3}{4}.

Step 4

For each of these values of k, find the exact value of tan(kπ).

98%

120 rated

Answer

Calculating:

  1. For k=112k = \frac{1}{12}: tan(112π)=tan(π12)=23tan(\frac{1}{12} \pi) = \tan(\frac{\pi}{12}) = 2 - \sqrt{3}

  2. For k=512k = \frac{5}{12}: tan(512π)=tan(5π12)=2+3tan(\frac{5}{12} \pi) = '\tan(\frac{5\pi}{12}) = 2 + \sqrt{3}

  3. For k=34k = \frac{3}{4}: tan(34π)=tan(3π4)=1tan(\frac{3}{4} \pi) = \tan(\frac{3\pi}{4}) = -1

Thus, the exact values are: tan(π12)=23, tan(5π12)=2+3, tan(3π4)=1tan(\frac{\pi}{12}) = 2 - \sqrt{3}, \ tan(\frac{5\pi}{12}) = 2 + \sqrt{3}, \ tan(\frac{3\pi}{4}) = -1.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

Other A-Level Further Maths topics to explore

;