Photo AI

The line l1 has vector equation \[ r = \begin{pmatrix} -6 \\ 4 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} -4 \\ 3 \\ 1 \end{pmatrix} \] and the line l2 has vector equation \[ r = \begin{pmatrix} -6 \\ 4 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ -4 \\ 1 \end{pmatrix} \] where \( \lambda \) and \( \mu \) are parameters - Edexcel - A-Level Maths: Pure - Question 6 - 2010 - Paper 7

Question icon

Question 6

The-line-l1-has-vector-equation--\[-r-=-\begin{pmatrix}--6-\\--4-\\---1-\end{pmatrix}-+-\lambda-\begin{pmatrix}--4-\\--3-\\--1-\end{pmatrix}-\]--and-the-line-l2-has-vector-equation--\[-r-=-\begin{pmatrix}--6-\\--4-\\--3-\end{pmatrix}-+-\mu-\begin{pmatrix}-3-\\---4-\\--1-\end{pmatrix}-\]--where-\(-\lambda-\)-and-\(-\mu-\)-are-parameters-Edexcel-A-Level Maths: Pure-Question 6-2010-Paper 7.png

The line l1 has vector equation \[ r = \begin{pmatrix} -6 \\ 4 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} -4 \\ 3 \\ 1 \end{pmatrix} \] and the line l2 has ... show full transcript

Worked Solution & Example Answer:The line l1 has vector equation \[ r = \begin{pmatrix} -6 \\ 4 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} -4 \\ 3 \\ 1 \end{pmatrix} \] and the line l2 has vector equation \[ r = \begin{pmatrix} -6 \\ 4 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ -4 \\ 1 \end{pmatrix} \] where \( \lambda \) and \( \mu \) are parameters - Edexcel - A-Level Maths: Pure - Question 6 - 2010 - Paper 7

Step 1

a) Write down the coordinates of A.

96%

114 rated

Answer

To find the coordinates of A, we need to determine the values of ( \lambda ) and ( \mu ) such that the equations for lines l1 and l2 are equal. This gives us the following equations:
-6 + \lambda (-4) = -6 + \mu (3)
4 + \lambda (3) = 4 - \mu (4)
-1 + \lambda (1) = 3 + \mu (1)
Solving these equations simultaneously, we determine the coordinates of A to be ( A(-6, 4, -1) ).

Step 2

b) Find the value of cos θ.

99%

104 rated

Answer

The direction vectors of the lines are:
For l1: ( \begin{pmatrix} -4 \ 3 \ 1 \end{pmatrix} ) and for l2: ( \begin{pmatrix} 3 \ -4 \ 1 \end{pmatrix} ).
Using the dot product to find ( \cos \theta ):
[ \text{cos} \theta = \frac{\overrightarrow{d_1} \cdot \overrightarrow{d_2}}{|\overrightarrow{d_1}| |\overrightarrow{d_2}|} = \frac{12 + 4 + 3}{\sqrt{(-4)^2 + 3^2 + 1^2} \sqrt{3^2 + (-4)^2 + 1^2}}
= \frac{19}{26}. ]

Step 3

c) Find the coordinates of X.

96%

101 rated

Answer

For the point X on l1 where ( \lambda = 4 ):
[ X = \begin{pmatrix} -6 \ 4 \ -1 \end{pmatrix} + 4 \begin{pmatrix} -4 \ 3 \ 1 \end{pmatrix}
= \begin{pmatrix} 10 \ 0 \ 11 \end{pmatrix} ]

Step 4

d) Find the vector AX.

98%

120 rated

Answer

To find the vector ( \overrightarrow{AX} ):
[ \overrightarrow{AX} = \begin{pmatrix} 10 \ 0 \ 11 \end{pmatrix} - \begin{pmatrix} -6 \ 4 \ -1 \end{pmatrix}
= \begin{pmatrix} 16 \ -4 \ 12 \end{pmatrix} ]

Step 5

e) Hence, or otherwise, show that |AX| = 4√26.

97%

117 rated

Answer

To find the magnitude of ( \overrightarrow{AX} ):
[ |\overrightarrow{AX}| = \sqrt{16^2 + (-4)^2 + 12^2} = \sqrt{256 + 16 + 144} = \sqrt{416} = 4\sqrt{26}. ]

Step 6

f) Find the length of AY, giving your answer to 3 significant figures.

97%

121 rated

Answer

Given that ( \overrightarrow{XY} ) is perpendicular to l1, we can use the Pythagorean theorem. The distance d can be calculated by finding the right triangle formed by AY:
Using the previously found values, we can find AY using
[ \frac{4\sqrt{26}}{d} = \cos \theta ]
Thus, the length of AY is:
[ AY = \frac{4}{\sqrt{26}} \times d = 27.9. ]

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

Other A-Level Maths: Pure topics to explore

1.1 Proof

Maths: Pure - AQA

1.2 Proof by Contradiction

Maths: Pure - AQA

2.1 Laws of Indices & Surds

Maths: Pure - AQA

2.2 Quadratics

Maths: Pure - AQA

2.3 Simultaneous Equations

Maths: Pure - AQA

2.4 Inequalities

Maths: Pure - AQA

2.5 Polynomials

Maths: Pure - AQA

2.6 Rational Expressions

Maths: Pure - AQA

2.7 Graphs of Functions

Maths: Pure - AQA

2.8 Functions

Maths: Pure - AQA

2.9 Transformations of Functions

Maths: Pure - AQA

2.10 Combinations of Transformations

Maths: Pure - AQA

2.11 Partial Fractions

Maths: Pure - AQA

2.12 Modelling with Functions

Maths: Pure - AQA

2.13 Further Modelling with Functions

Maths: Pure - AQA

3.1 Equation of a Straight Line

Maths: Pure - AQA

3.2 Circles

Maths: Pure - AQA

4.1 Binomial Expansion

Maths: Pure - AQA

4.2 General Binomial Expansion

Maths: Pure - AQA

4.3 Arithmetic Sequences & Series

Maths: Pure - AQA

4.4 Geometric Sequences & Series

Maths: Pure - AQA

4.5 Sequences & Series

Maths: Pure - AQA

4.6 Modelling with Sequences & Series

Maths: Pure - AQA

5.1 Basic Trigonometry

Maths: Pure - AQA

5.2 Trigonometric Functions

Maths: Pure - AQA

5.3 Trigonometric Equations

Maths: Pure - AQA

5.4 Radian Measure

Maths: Pure - AQA

5.5 Reciprocal & Inverse Trigonometric Functions

Maths: Pure - AQA

5.6 Compound & Double Angle Formulae

Maths: Pure - AQA

5.7 Further Trigonometric Equations

Maths: Pure - AQA

5.8 Trigonometric Proof

Maths: Pure - AQA

5.9 Modelling with Trigonometric Functions

Maths: Pure - AQA

6.1 Exponential & Logarithms

Maths: Pure - AQA

6.2 Laws of Logarithms

Maths: Pure - AQA

6.3 Modelling with Exponentials & Logarithms

Maths: Pure - AQA

7.1 Differentiation

Maths: Pure - AQA

7.2 Applications of Differentiation

Maths: Pure - AQA

7.3 Further Differentiation

Maths: Pure - AQA

7.4 Further Applications of Differentiation

Maths: Pure - AQA

7.5 Implicit Differentiation

Maths: Pure - AQA

8.1 Integration

Maths: Pure - AQA

8.2 Further Integration

Maths: Pure - AQA

8.3 Differential Equations

Maths: Pure - AQA

9.1 Parametric Equations

Maths: Pure - AQA

10.1 Solving Equations

Maths: Pure - AQA

10.2 Modelling involving Numerical Methods

Maths: Pure - AQA

11.1 Vectors in 2 Dimensions

Maths: Pure - AQA

11.2 Vectors in 3 Dimensions

Maths: Pure - AQA

;