Photo AI

Using the substitution $u = 2 + \sqrt{(2x + 1)}$, or other suitable substitutions, find the exact value of \[ \int_{0}^{1} \frac{1}{2 + \sqrt{(2x + 1)}}\,dx \] giving your answer in the form $A + 2 \ln B$, where $A$ is an integer and $B$ is a positive constant. - Edexcel - A-Level Maths Pure - Question 5 - 2013 - Paper 1

Question icon

Question 5

Using-the-substitution-$u-=-2-+-\sqrt{(2x-+-1)}$,-or-other-suitable-substitutions,-find-the-exact-value-of--\[-\int_{0}^{1}-\frac{1}{2-+-\sqrt{(2x-+-1)}}\,dx-\]--giving-your-answer-in-the-form-$A-+-2-\ln-B$,-where-$A$-is-an-integer-and-$B$-is-a-positive-constant.-Edexcel-A-Level Maths Pure-Question 5-2013-Paper 1.png

Using the substitution $u = 2 + \sqrt{(2x + 1)}$, or other suitable substitutions, find the exact value of \[ \int_{0}^{1} \frac{1}{2 + \sqrt{(2x + 1)}}\,dx \] giv... show full transcript

Worked Solution & Example Answer:Using the substitution $u = 2 + \sqrt{(2x + 1)}$, or other suitable substitutions, find the exact value of \[ \int_{0}^{1} \frac{1}{2 + \sqrt{(2x + 1)}}\,dx \] giving your answer in the form $A + 2 \ln B$, where $A$ is an integer and $B$ is a positive constant. - Edexcel - A-Level Maths Pure - Question 5 - 2013 - Paper 1

Step 1

Substitution: $u = 2 + \sqrt{(2x + 1)}$

96%

114 rated

Answer

We start with the substitution u=2+(2x+1)u = 2 + \sqrt{(2x + 1)}. To apply this substitution, we first need to express dxdx in terms of dudu.

Step 2

Find $dx$ in terms of $du$

99%

104 rated

Answer

Differentiating both sides with respect to xx:

dudx=12(2x+1)2dudx=1(2x+1)\frac{du}{dx} = \frac{1}{2 \sqrt{(2x + 1)}} \cdot 2 \Rightarrow \frac{du}{dx} = \frac{1}{\sqrt{(2x + 1)}}

Therefore,

dx=(2x+1)dudx = \sqrt{(2x + 1)} \, du

Step 3

Change the limits of integration

96%

101 rated

Answer

When x=0x = 0,

u=2+(20+1)=2+1=3u = 2 + \sqrt{(2 \cdot 0 + 1)} = 2 + 1 = 3

When x=1x = 1,

u=2+(21+1)=2+3u = 2 + \sqrt{(2 \cdot 1 + 1)} = 2 + \sqrt{3}

Step 4

Rewrite the integral

98%

120 rated

Answer

The integral becomes:

32+312+(u2)(2x+1)du\int_{3}^{2 + \sqrt{3}} \frac{1}{2 + (u - 2)} \cdot \sqrt{(2x + 1)} \, du Substituting back, we need to find (2x+1)\sqrt{(2x + 1)} in terms of uu:

(2x+1)=u2\sqrt{(2x + 1)} = u - 2 Therefore,

32+31u(u2)du\int_{3}^{2 + \sqrt{3}} \frac{1}{u} (u - 2) \, du

Step 5

Compute the integral

97%

117 rated

Answer

This simplifies to:

32+3(12u)du=[u2lnu]32+3\int_{3}^{2 + \sqrt{3}} \left(1 - \frac{2}{u}\right) \, du = \left[u - 2 \ln u \right]_{3}^{2 + \sqrt{3}}

Evaluating this gives:

(2+32ln(2+3))(32ln3)(2 + \sqrt{3} - 2 \ln(2 + \sqrt{3})) - (3 - 2 \ln 3)

Step 6

Combine results

97%

121 rated

Answer

Simplifying this results in:

2+2ln32ln(2+3)2 + 2 \ln 3 - 2 \ln(2 + \sqrt{3})

This can be expressed as:

2+2ln(32+3)2 + 2 \ln \left( \frac{3}{2 + \sqrt{3}} \right)

Step 7

Final Form

96%

114 rated

Answer

Finally, identifying A=2A = 2 and B=32+3B = \frac{3}{2 + \sqrt{3}}, we have:

A+2lnBA + 2 \ln B

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

Other A-Level Maths Pure topics to explore

1.1 Proof

Maths Pure - AQA

1.2 Proof by Contradiction

Maths Pure - AQA

2.1 Laws of Indices & Surds

Maths Pure - AQA

2.2 Quadratics

Maths Pure - AQA

2.3 Simultaneous Equations

Maths Pure - AQA

2.4 Inequalities

Maths Pure - AQA

2.5 Polynomials

Maths Pure - AQA

2.6 Rational Expressions

Maths Pure - AQA

2.7 Graphs of Functions

Maths Pure - AQA

2.8 Functions

Maths Pure - AQA

2.9 Transformations of Functions

Maths Pure - AQA

2.10 Combinations of Transformations

Maths Pure - AQA

2.11 Partial Fractions

Maths Pure - AQA

2.12 Modelling with Functions

Maths Pure - AQA

2.13 Further Modelling with Functions

Maths Pure - AQA

3.1 Equation of a Straight Line

Maths Pure - AQA

3.2 Circles

Maths Pure - AQA

4.1 Binomial Expansion

Maths Pure - AQA

4.2 General Binomial Expansion

Maths Pure - AQA

4.3 Arithmetic Sequences & Series

Maths Pure - AQA

4.4 Geometric Sequences & Series

Maths Pure - AQA

4.5 Sequences & Series

Maths Pure - AQA

4.6 Modelling with Sequences & Series

Maths Pure - AQA

5.1 Basic Trigonometry

Maths Pure - AQA

5.2 Trigonometric Functions

Maths Pure - AQA

5.3 Trigonometric Equations

Maths Pure - AQA

5.4 Radian Measure

Maths Pure - AQA

5.5 Reciprocal & Inverse Trigonometric Functions

Maths Pure - AQA

5.6 Compound & Double Angle Formulae

Maths Pure - AQA

5.7 Further Trigonometric Equations

Maths Pure - AQA

5.8 Trigonometric Proof

Maths Pure - AQA

5.9 Modelling with Trigonometric Functions

Maths Pure - AQA

6.1 Exponential & Logarithms

Maths Pure - AQA

6.2 Laws of Logarithms

Maths Pure - AQA

6.3 Modelling with Exponentials & Logarithms

Maths Pure - AQA

7.1 Differentiation

Maths Pure - AQA

7.2 Applications of Differentiation

Maths Pure - AQA

7.3 Further Differentiation

Maths Pure - AQA

7.4 Further Applications of Differentiation

Maths Pure - AQA

7.5 Implicit Differentiation

Maths Pure - AQA

8.1 Integration

Maths Pure - AQA

8.2 Further Integration

Maths Pure - AQA

8.3 Differential Equations

Maths Pure - AQA

9.1 Parametric Equations

Maths Pure - AQA

10.1 Solving Equations

Maths Pure - AQA

10.2 Modelling involving Numerical Methods

Maths Pure - AQA

11.1 Vectors in 2 Dimensions

Maths Pure - AQA

11.2 Vectors in 3 Dimensions

Maths Pure - AQA

;