Photo AI
Question 7
4. (a) Express $$\frac{25}{x^2(2x + 1)}$$ in partial fractions. (b) Use calculus to find the exact volume of the solid of revolution generated, giving your ans... show full transcript
Step 1
Answer
To express the given fraction in partial fractions, we can assume it takes the following form:
Next, we multiply through by the denominator, resulting in:
Expanding both sides gives:
To find the coefficients, we need to collect terms:
Now, equate coefficients from both sides:
Thus, the partial fraction decomposition is:
Step 2
Answer
The volume (V) of the solid generated by rotating region (R) around the x-axis can be computed using the formula:
Here, the function defined by the curve (C) is:
Thus, we have:
This simplifies to:
Computing the integral, we can separate the terms:
Using the substitution (u = 2x + 1) yields:
Changing the limits accordingly, when (x=1), (u=3) and when (x=4), (u=9). Thus, the entry becomes:
Evaluating the integral gives:
Finally, we can express the volume in the required form:
where:
a = 0, b = \frac{75\pi}{2}, c = 3.
Report Improved Results
Recommend to friends
Students Supported
Questions answered
1.1 Proof
Maths: Pure - AQA
1.2 Proof by Contradiction
Maths: Pure - AQA
2.1 Laws of Indices & Surds
Maths: Pure - AQA
2.2 Quadratics
Maths: Pure - AQA
2.3 Simultaneous Equations
Maths: Pure - AQA
2.4 Inequalities
Maths: Pure - AQA
2.5 Polynomials
Maths: Pure - AQA
2.6 Rational Expressions
Maths: Pure - AQA
2.7 Graphs of Functions
Maths: Pure - AQA
2.8 Functions
Maths: Pure - AQA
2.9 Transformations of Functions
Maths: Pure - AQA
2.10 Combinations of Transformations
Maths: Pure - AQA
2.11 Partial Fractions
Maths: Pure - AQA
2.12 Modelling with Functions
Maths: Pure - AQA
2.13 Further Modelling with Functions
Maths: Pure - AQA
3.1 Equation of a Straight Line
Maths: Pure - AQA
3.2 Circles
Maths: Pure - AQA
4.1 Binomial Expansion
Maths: Pure - AQA
4.2 General Binomial Expansion
Maths: Pure - AQA
4.3 Arithmetic Sequences & Series
Maths: Pure - AQA
4.4 Geometric Sequences & Series
Maths: Pure - AQA
4.5 Sequences & Series
Maths: Pure - AQA
4.6 Modelling with Sequences & Series
Maths: Pure - AQA
5.1 Basic Trigonometry
Maths: Pure - AQA
5.2 Trigonometric Functions
Maths: Pure - AQA
5.3 Trigonometric Equations
Maths: Pure - AQA
5.4 Radian Measure
Maths: Pure - AQA
5.5 Reciprocal & Inverse Trigonometric Functions
Maths: Pure - AQA
5.6 Compound & Double Angle Formulae
Maths: Pure - AQA
5.7 Further Trigonometric Equations
Maths: Pure - AQA
5.8 Trigonometric Proof
Maths: Pure - AQA
5.9 Modelling with Trigonometric Functions
Maths: Pure - AQA
6.1 Exponential & Logarithms
Maths: Pure - AQA
6.2 Laws of Logarithms
Maths: Pure - AQA
6.3 Modelling with Exponentials & Logarithms
Maths: Pure - AQA
7.1 Differentiation
Maths: Pure - AQA
7.2 Applications of Differentiation
Maths: Pure - AQA
7.3 Further Differentiation
Maths: Pure - AQA
7.4 Further Applications of Differentiation
Maths: Pure - AQA
7.5 Implicit Differentiation
Maths: Pure - AQA
8.1 Integration
Maths: Pure - AQA
8.2 Further Integration
Maths: Pure - AQA
8.3 Differential Equations
Maths: Pure - AQA
9.1 Parametric Equations
Maths: Pure - AQA
10.1 Solving Equations
Maths: Pure - AQA
10.2 Modelling involving Numerical Methods
Maths: Pure - AQA
11.1 Vectors in 2 Dimensions
Maths: Pure - AQA
11.2 Vectors in 3 Dimensions
Maths: Pure - AQA