Photo AI
Question 8
The voltage (potential difference) across a length of wire is 1.5 V. A charge of 0.042 C flows through the wire. Calculate the energy transferred. Use the equatio... show full transcript
Step 1
Step 2
Answer
The voltmeter should be connected in parallel with the iron wire to measure the voltage across it, while the ammeter should be connected in series with the iron wire to measure the current. The diagram should show the connections appropriately, ensuring that the symbols for both devices are included.
Step 3
Step 4
Answer
By referencing Figure 21, find the corresponding resistance value for a 100 cm length of iron wire. Read the value at the 100 cm mark and note that it may be approximately in the range of the measured values represented in the graph.
Step 5
Report Improved Results
Recommend to friends
Students Supported
Questions answered
1.1 Energy Changes in a System
Physics - AQA
1.2 National & Global Energy Resources
Physics - AQA
2.1 Current, Potential Difference & Resistance
Physics - AQA
2.2 Series & Parallel Circuits
Physics - AQA
2.3 Energy Transfers
Physics - AQA
2.4 Static Electricity
Physics - AQA
3.1 Changes of State & the Particle Model
Physics - AQA
3.2 Internal Energy & Energy Transfers
Physics - AQA
3.3 Particle Model & Pressure
Physics - AQA
4.1 Atoms & Isotopes
Physics - AQA
4.2 Atoms & Nuclear Radiation
Physics - AQA
4.3 Hazards & Uses of Radioactive Emissions & of Background Radiation
Physics - AQA
4.4 Nuclear Fission & Fusion
Physics - AQA
5.1 Forces & their Interactions
Physics - AQA
5.2 Work Done & Energy Transfer
Physics - AQA
5.3 Forces & Elasticity
Physics - AQA
5.4 Moments, Levers & Gears
Physics - AQA
5.5 Pressure & Pressure Differences in Fluids
Physics - AQA
5.6 Describing Motion
Physics - AQA
5.7 Newton's Laws of Motion
Physics - AQA
5.8 Stopping Distances
Physics - AQA
5.9 Momentum
Physics - AQA
6.1 Waves in Air, Fluids & Solids
Physics - AQA
6.2 Electromagnetic Waves
Physics - AQA
6.3 Optics
Physics - AQA
6.4 Black Body Radiation
Physics - AQA
7.1 Permanent & Induced Magnetism, Magnetic Forces & Fields
Physics - AQA
7.2 The Motor Effect
Physics - AQA
7.3 Induced Potential, Transformers & the National Grid
Physics - AQA
8.1 Solar system, Stability of Orbital Motions & Satellites
Physics - AQA
8.2 Red-shift
Physics - AQA