Los op vir x:
1.1.1
$x^2 - x - 12 = 0$
1.1.2
$x(x + 3) - 1 = 0$ (Laat jou antwoord in die eenvoudigste wortelvorm.)
1.1.3
$x(4 - x) < 0$
1.1.4
$x = \frac{a^2 + a - 2}{a - 1}$
aas $a = 888888888$
1.2 Los die volgende vergelykings gelyktydig op:
$y + 7 = 2x$ en $x^2 - xy + 3y = 15$
1.3 Bepaal die waardeverzameling van die funksie $y = x + \frac{1}{x}$, $x \neq 0$ en $x$ is reël. - NSC Mathematics - Question 1 - 2016 - Paper 1
Question 1
Los op vir x:
1.1.1
$x^2 - x - 12 = 0$
1.1.2
$x(x + 3) - 1 = 0$ (Laat jou antwoord in die eenvoudigste wortelvorm.)
1.1.3
$x(4 - x) < 0$
1.1.4
$x = \frac{... show full transcript
Worked Solution & Example Answer:Los op vir x:
1.1.1
$x^2 - x - 12 = 0$
1.1.2
$x(x + 3) - 1 = 0$ (Laat jou antwoord in die eenvoudigste wortelvorm.)
1.1.3
$x(4 - x) < 0$
1.1.4
$x = \frac{a^2 + a - 2}{a - 1}$
aas $a = 888888888$
1.2 Los die volgende vergelykings gelyktydig op:
$y + 7 = 2x$ en $x^2 - xy + 3y = 15$
1.3 Bepaal die waardeverzameling van die funksie $y = x + \frac{1}{x}$, $x \neq 0$ en $x$ is reël. - NSC Mathematics - Question 1 - 2016 - Paper 1
Step 1
1.1.1 $x^2 - x - 12 = 0$
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To solve x2−x−12=0, we can factor the quadratic:
(x−4)(x+3)=0
Setting each factor to zero gives:
x−4=0⇒x=4
x+3=0⇒x=−3
Thus, the solutions are x=4 or x=−3.
Step 2
1.1.2 $x(x + 3) - 1 = 0$ (Laat jou antwoord in die eenvoudigste wortelvorm.)
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Rearranging gives:
x(x+3)=1
Expanding this, we have:
x2+3x−1=0
Using the quadratic formula:
x=2a−b±b2−4ac=2(1)−3±32−4(1)(−1)
This simplifies to:
x=2−3±9+4=2−3±13
Step 3
1.1.3 $x(4 - x) < 0$
96%
101 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To solve the inequality, first, find the roots:
When x=0, 4−0>0.
When x=4, 0<0.
This means the critical points are x=0 and x=4. Using test intervals:
For x<0, choose x=−1: (−1)(4−(−1))<0 (True)
For 0<x<4, choose x=2: (2)(4−2)>0 (False)
For x>4, choose x=5: (5)(4−5)<0 (True)
Thus, the solution is x<0 or x>4.
Step 4
1.1.4 $x = \frac{a^2 + a - 2}{a - 1}$ a as $a = 888888888$
98%
120 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Substituting a=888888888 into the expression:
x=888888888−1(888888888)2+888888888−2
This requires calculating the values:
First calculate (888888888)2.
Then, add 888888888 and subtract 2.
Lastly, divide by 888888887.
Step 5
1.2 Los die volgende vergelykings gelyktydig op: $y + 7 = 2x$ en $x^2 - xy + 3y = 15$
97%
117 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
First, isolate y from the first equation:
y=2x−7
Now substitute into the second equation:
x2−x(2x−7)+3(2x−7)=15
This expands to:
x2−2x2+7x+6x−21=15
Combine the terms to form:
−x2+13x−36=0
Using the quadratic formula:
x=−2−13±(13)2−4(−1)(−36)
Step 6
1.3 Bepaal die waardeverzameling van die funksie $y = x + \frac{1}{x}$, $x \neq 0$ en $x$ is reël.
97%
121 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To find the range of y=x+x1, analyze its behavior:
Differentiate to find critical points:
y′=1−x21
Setting y′=0 results in critical points which can be analyzed for maxima and minima.
Calculate limits as x→0+ and x→∞.
Determine that the function has a minimum value at y=2 when x=1 and approaches infinity otherwise.