Photo AI

Los op vir x: 1.1.1 $x^2 - x - 12 = 0$ 1.1.2 $x(x + 3) - 1 = 0$ (Laat jou antwoord in die eenvoudigste wortelvorm.) 1.1.3 $x(4 - x) < 0$ 1.1.4 $x = \frac{a^2 + a - 2}{a - 1}$ aas $a = 888888888$ 1.2 Los die volgende vergelykings gelyktydig op: $y + 7 = 2x$ en $x^2 - xy + 3y = 15$ 1.3 Bepaal die waardeverzameling van die funksie $y = x + \frac{1}{x}$, $x \neq 0$ en $x$ is reël. - NSC Mathematics - Question 1 - 2016 - Paper 1

Question icon

Question 1

Los-op-vir-x:--1.1.1--$x^2---x---12-=-0$---1.1.2--$x(x-+-3)---1-=-0$-(Laat-jou-antwoord-in-die-eenvoudigste-wortelvorm.)---1.1.3--$x(4---x)-<-0$---1.1.4--$x-=-\frac{a^2-+-a---2}{a---1}$---aas-$a-=-888888888$----1.2-Los-die-volgende-vergelykings-gelyktydig-op:-$y-+-7-=-2x$-en-$x^2---xy-+-3y-=-15$----1.3-Bepaal-die-waardeverzameling-van-die-funksie-$y-=-x-+-\frac{1}{x}$,-$x-\neq-0$-en-$x$-is-reël.-NSC Mathematics-Question 1-2016-Paper 1.png

Los op vir x: 1.1.1 $x^2 - x - 12 = 0$ 1.1.2 $x(x + 3) - 1 = 0$ (Laat jou antwoord in die eenvoudigste wortelvorm.) 1.1.3 $x(4 - x) < 0$ 1.1.4 $x = \frac{... show full transcript

Worked Solution & Example Answer:Los op vir x: 1.1.1 $x^2 - x - 12 = 0$ 1.1.2 $x(x + 3) - 1 = 0$ (Laat jou antwoord in die eenvoudigste wortelvorm.) 1.1.3 $x(4 - x) < 0$ 1.1.4 $x = \frac{a^2 + a - 2}{a - 1}$ aas $a = 888888888$ 1.2 Los die volgende vergelykings gelyktydig op: $y + 7 = 2x$ en $x^2 - xy + 3y = 15$ 1.3 Bepaal die waardeverzameling van die funksie $y = x + \frac{1}{x}$, $x \neq 0$ en $x$ is reël. - NSC Mathematics - Question 1 - 2016 - Paper 1

Step 1

1.1.1 $x^2 - x - 12 = 0$

96%

114 rated

Answer

To solve x2x12=0x^2 - x - 12 = 0, we can factor the quadratic:

(x4)(x+3)=0(x - 4)(x + 3) = 0

Setting each factor to zero gives:

  • x4=0x=4x - 4 = 0 \Rightarrow x = 4
  • x+3=0x=3x + 3 = 0 \Rightarrow x = -3

Thus, the solutions are x=4x = 4 or x=3x = -3.

Step 2

1.1.2 $x(x + 3) - 1 = 0$ (Laat jou antwoord in die eenvoudigste wortelvorm.)

99%

104 rated

Answer

Rearranging gives:

x(x+3)=1x(x + 3) = 1

Expanding this, we have: x2+3x1=0x^2 + 3x - 1 = 0

Using the quadratic formula:

x=b±b24ac2a=3±324(1)(1)2(1)x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-3 \pm \sqrt{3^2 - 4(1)(-1)}}{2(1)}

This simplifies to: x=3±9+42=3±132x = \frac{-3 \pm \sqrt{9 + 4}}{2} = \frac{-3 \pm \sqrt{13}}{2}

Step 3

1.1.3 $x(4 - x) < 0$

96%

101 rated

Answer

To solve the inequality, first, find the roots:

  1. When x=0x = 0, 40>04 - 0 > 0.
  2. When x=4x = 4, 0<00 < 0.

This means the critical points are x=0x = 0 and x=4x = 4. Using test intervals:

  • For x<0x < 0, choose x=1x = -1: (1)(4(1))<0(-1)(4 - (-1)) < 0 (True)
  • For 0<x<40 < x < 4, choose x=2x = 2: (2)(42)>0(2)(4 - 2) > 0 (False)
  • For x>4x > 4, choose x=5x = 5: (5)(45)<0(5)(4 - 5) < 0 (True)

Thus, the solution is x<0x < 0 or x>4x > 4.

Step 4

1.1.4 $x = \frac{a^2 + a - 2}{a - 1}$ a as $a = 888888888$

98%

120 rated

Answer

Substituting a=888888888a = 888888888 into the expression:

x=(888888888)2+88888888828888888881x = \frac{(888888888)^2 + 888888888 - 2}{888888888 - 1}

This requires calculating the values:

  1. First calculate (888888888)2(888888888)^2.
  2. Then, add 888888888888888888 and subtract 22.
  3. Lastly, divide by 888888887888888887.

Step 5

1.2 Los die volgende vergelykings gelyktydig op: $y + 7 = 2x$ en $x^2 - xy + 3y = 15$

97%

117 rated

Answer

First, isolate yy from the first equation:

y=2x7y = 2x - 7

Now substitute into the second equation:

x2x(2x7)+3(2x7)=15x^2 - x(2x - 7) + 3(2x - 7) = 15

This expands to: x22x2+7x+6x21=15x^2 - 2x^2 + 7x + 6x - 21 = 15

Combine the terms to form: x2+13x36=0-x^2 + 13x - 36 = 0

Using the quadratic formula: x=13±(13)24(1)(36)2x = \frac{-13 \pm \sqrt{(13)^2 - 4(-1)(-36)}}{-2}

Step 6

1.3 Bepaal die waardeverzameling van die funksie $y = x + \frac{1}{x}$, $x \neq 0$ en $x$ is reël.

97%

121 rated

Answer

To find the range of y=x+1xy = x + \frac{1}{x}, analyze its behavior:

  1. Differentiate to find critical points: y=11x2y' = 1 - \frac{1}{x^2}
  2. Setting y=0y' = 0 results in critical points which can be analyzed for maxima and minima.
  3. Calculate limits as x0+x \to 0^+ and xx \to \infty.
  4. Determine that the function has a minimum value at y=2y = 2 when x=1x = 1 and approaches infinity otherwise.

Thus, the range is y2y \geq 2.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;